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Abstract 

The relationship between periodic wavetrains and solitary waves in complex Ginzburg-Landau type equations, such 
as those that model optical fiber amplifiers, is studied in the nonlinear Schriidinger limit with a Melnikov method. An 
important example, the cubic complex Ginzburg-Landau equation, is studied in detail. For this equation it is found that 
in the NLS limit particular families of periodic wavetrains all deform asymptotically to a single, persisting, stationary, 
nonlinear Schriidinger soliton as their periods tend to infinity. @ 1997 Published by Elsevier Science B.V. 

PACS: 42.8 1; 42.55; 42.65 
Keywords: Fiber optics; Fiber amplifiers; Ginzburg-Landau equations; Melnikov methods 

1. Introduction 

In standard nondimensional soliton units, for pulse- 
widths greater than about a picosecond, the evolu- 
tion of pulses in monomode optical fibers is well de- 
scribed to leading order by the integrable, nonlinear 
Schrodinger (NLS) equation [l-3] 

g = ig + ilql*q. 

Here q is the complex envelope of the electric field, 
2 is the coordinate along the fiber, and T is the re- 
tarded time in a frame moving with the group velocity 
associated with some carrier frequency wc. This equa- 
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tion, which appears also in many other contexts other 
than fiber optics, supports soliton solutions, i.e. stable 
pulses which collide elastically with only a change of 
phase. This fact has inspired intense research over the 
past decade on the possibility of exploiting solitons 
for high bit-rate communication systems. 

In this Letter we investigate which traveling wave 
solutions of the NLS equation, both solitary and pe- 
riodic, “persist”, or are “selected” when perturbations 
describing optical amplification, such as that resulting 
from erbium doping or Raman gain, are added to the 
NLS equation. As will be seen from our results, op- 
tical amplification destroys most traveling wave solu- 
tions except for a small subset. 

The persistence of NLS solitary waves has been 
considered to some extent before, and the persisting 
solitary waves found are sometimes called “ampli- 
fier solitons” or “autosolitons” [4]. For some impor- 

0375-9601/97/$17.00 @ 1997 Published by Elsevier Science B.V. All rights reserved 
PII SO375-9601(97)00785-8 



392 G. Cruz-Pacheco, B.PI Lute/Physics Letters A 236 (1997) 391-402 

tant special cases (linear gain with Gaussian filtering) functions g and h, whose derivatives appear in the 
exact autosoliton solutions have been found [7-91. perturbation, are real analytic functions on [0, 00) 
These solutions are stationary in the retarded frame with at most polynomial growth. The point of view 
associated with the carrier frequency at the gain peak, we are taking is that the perturbation ultimately of in- 
which is consistent with the intuition that frequency terest for applications is obtained by setting E = 1, but 
dependent gain ought to center the spectrum of a pulse that the main obstruction for the existence of traveling 
around the gain peak. In this Letter we elucidate the waves is their persistence under small perturbation. 
relationship of these autosolitons to families of non- The diffusion term in the perturbation, with diffu- 
stationary, periodic, persisting wavetrains, which are sion coefficient D,, models the filtering effect of band- 
also important in applications. For example, periodic limited gain, and is derived under the assumptions that 
wavetrains of this type are relevant to fiber optical the spectrum of the waves under consideration have 
soliton sources for which the fiber dispersion and non- a spectrum narrower than the gain spectrum (which 
linearity play a significant role, such as in many fiber is true for many fiber-optic applications), and that 
lasers [ 161. the reference carrier frequency wg around which the 

We have studied the persistence of these periodic perturbed NLS envelope equation has been derived is 
waves as a subtopic in another series of papers [lo- equal to the frequency of a peak in the gain spectrum. 
121, which we will refer to here as CLLl, CLL2, and The latter assumption implies that the retarded frame 
CLL3. Besides the relationship of these waves to the in which we work has an absolute physical reference. 
solitary waves, the inclusion of a physically relevant The term containing the function g’( .) models both 
type of nonlocal perturbation, with which optical am- linear gain and fast saturation effects such as two- 
plifiers such as erbium-doped fiber amplifiers (ED- photon absorption [ 5,6,9]. For example, in Sections 4 
FAs) can be modeled, is also considered here. and 5, we specialize to 

The rest of the Letter is organized as follows. In Sec- 
tion 2 we precisely pose the problem to be analyzed. g’(z) = -R+sz, h’(z) =0, (3) 
In Section 3 we derive Melnikov conditions for the 
persistence of traveling waves. In Section 4 we briefly 

which yields the ubiquitous cubic complex Ginzburg- 

summarize the relevant results found in CLLl-CLL3 
Landau (CGL) equation 

for periodic waves, focusing especially on the cubic 
complex Ginzburg-Landau (CGL) equation. Then, in L&s + Rq - slq12q . 

Section 5, we relate these results to the persisting au- ‘(4) 
tosolitons. 

Various versions of this equation have been used to 
model fiber optical amplification before [ 8,9,4]. 

2. Problem definition To model EDFAs, which saturate on time scales 
(milliseconds) much longer than a typical pulse (pi- 

We study the perturbed NLS equation coseconds) in fiber optical applications, we have also 
included the term h’( I (q) ) in the perturbation which 
depends only on the average intensity 

+ 6 1 Dg$ - (s’(1912) + h’(l(q)))q 1 9 (2) 

which contains in square brackets a very general 
Ginzburg-Landau type perturbation that models op- 
tical amplification processes. The physical meaning 
of each of these terms is explained further below. 
The parameter E is introduced to control the size of 
the perturbation for the mathematical analysis. The 

TO 
I(9) = & I dTlq12, 

0 

where TO is the fundamental period of the wavetrain. 
Nonlocal terms of this type were not considered in 
CLLl-CLL3. For a solitary pulse, TO = 00, Z(q) is 
identically zero, and only the first two terms of the 
perturbation are present in this case. As far as the 
persistence of traveling waves is concerned, the results 
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obtained with a term h’( I( q) ) in the perturbation are 
very similar to those obtained with a g term, so later 
on we will only consider a detailed example with a g. 

Having defined the equations to be studied, we now 
describe the traveling wave solutions of the unper- 
turbed NLS equation which we test for persistence. 
Here we focus on what we called in CLL2 the “uncen- 
tered” NLS traveling waves. We call these uncentered 
because their orbits in the potential governing the NLS 
traveling waves are not symmetrical about the origin 
(see CLL2 for details). These waves have amplitude 
everywhere greater than zero, and form the bulk of the 
NLS traveling wavetrains in a parametric sense, and 
are the wavetrains most relevant to telecommunication 
oriented fiber optics. There is also a smaller class of 
waves we named “centered waves” in CLL2 which we 
do not discuss here because the persistence properties 
of these wavetrains and their relationship to the soli- 
tary waves is identical to the case of the uncentered 
waves with 6 = 1 (8 is defined below). 

All of the uncentered periodic traveling waves of 
the unperturbed cubic NLS equation (E = 0) of period 
TO have the form 

(6) 

where 5 = T - CZ - 190, and where 

s(gq = j (c+&) @‘+m 
0 

and 

C = 4-,(2Xn - %l,Uff(K, -K*/s*) 

(8) 

X d(1 -a*)(1 -K2/a2)), (9) 

/L=k7j!3&2(1 -62)(62-K2), (10) 

a=~(~(~-~*)-(2-K*))-$ (11) 

Some examples of these waves can be seen in Fig. 6 at 
the end of the Letter. The function dn( ., K) is the Ja- 
cobi elliptic dnoidal function with modulus K, n( K, 6) 

is the complete elliptic integral of the third kind, and K 

is related to TO and 7 through the periodicity constraint 

soliton limit -,q 1 

uncentered linear /I’ 
phase waves //’ 

,,n 
/ I 

/’ 
,I” general 

K 

1’ uncentered 
//’ waves 

,’ 
I  , 
f” cw waves- 

0 

6 1 

Fig. 1. The K, 6 simplex. 

2mK(/c) =Tov. (12) 

Here, K(K) is the complete elliptic integral of the first 
kind, which entails that 0 < K < 1. Due to the fact that 
the period of the Jacobi dnoidal function dn2 ( ., K) is 
2 K(K), the parameter m is a positive integer equal to 
the number of oscillations of the amplitude in a com- 
plete period TO. We therefore call m the “modulation 
number”. The parameter Scan be any real number such 
that K < 6 6 1. The parameter n is a non-negative in- 
teger and is the winding number of the phase over one 
period. The parameters ~0, and 00 are trivial constants 
of motion related to the S’ phase symmetry and trans- 
lational invariance of the NLS equation, respectively. 

In practice it is easiest to think of these solutions as 
consisting of families indexed by the integers n and 
m, and the two signs of CL. Then, the solutions in each 
family, for a fixed value of TO, are parameterized by 
the continuous parameters K and 6 lying within the 
right triangular “simplex” (see Fig. 1) defined by 

o<K<6<1. (13) 

For any point in the simplex, for given choices of n, 
m, and TO, the parameter v is uniquely determined 
by the constraint (12). Fig. 1 also indicates the locus 
of certain special subfamilies of solutions found at 
three extremes of the simplex. We now describe these 
subfamilies, as these will play important roles later on. 

At the lower edge of the simplex (K = 0)) the trav- 
eling waves reduce to continuous wave (cw) solutions 
(sometimes called “rotating waves” in the mathemat- 
ical literature) 
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where r), K, 00, and uo are the (real) soliton parame- 
ters. 

Our goal is to determine the persistence of all the 
above solutions when E is made different from zero. 

3. Melnikov conditions In fact, these solutions exist for the NLS equation for 
any choice of 6 > 0. It is shown in CLL2 that the sub- 
set of cw waves along the lower edge of the simplex 
are exactly the cw waves which are linearly stable in 
the unperturbed NLS equation to sideband perturba- 
tions of the form 

In this section we derive the Melnikov conditions 
for the persistence of traveling wave solutions when 
E is made different from zero in I$. (2). Our deriva- 
tion works directly from the governing partial differ- 
ential equation, but yields conditions which are pre- 
cisely equivalent to the conditions derived via the clas- 
sical Melnikov method from the ODES governing the 
traveling waves. This equivalence is shown in CLL2. 
The derivation here is slightly simpler than that given 
in CLL2. 

We begin by writing Eq. (2) in the variational form 

q=qCw(l+p+(Z)eieT+p-(Z)e-ikmT), (15) 

where k, = 2nm/To is the wavenumber of the pertur- 
bation and p* ( Z) are the (small magnitude) complex 
perturbation amplitudes. The cw waves with S > 1 
are all linearly unstable to wavenumber k, perturba- 
tions. The cw wave solutions with 6 < 1 are degener- 
ate in the sense that all traveling wave families having 
the same period and winding number n but different 
values of the modulation number m all reduce to the 
same family of cw waves. 

At the right-hand edge of the simplex (6 = 1) are lo- 
cated traveling waves with linear phase profiles, which 
we call “uncentered linear phase waves” of the form 

azq= -iK -eG 
Sq’ ,q*’ (18) 

where H is the NLS Hamiltonian 

TO 

HE; 
s 

(bq12 - 1q14) dT, 
0 

(19) 

G= Ta(&.pTq~2+dk!\2~j dT+Toh(z(q)). 
s 
0 

(20) 

For any functional F that is conserved by the unper- 
turbed NLS equation, we have 

q=Tdn(q[T-cZ--801) 

xexp[i(cT+~[~2(2-K2)-c2]Zf~c)], (16) 

where c = 27rn/To and q = 2m K(K) /TO. 
Finally, we may take a soliton (solitary wave) limit 

of the NLS traveling wave solutions by taking TO ---t 
co. This limit can be taken with 71 and c fixed, which 
forces K + 1 and 6 -+ 1 along paths in the simplex 
which depend on TO, n, m, 71, and c, and which asymp- 
totically approach the upper right-hand corner of the 
simplex. When the limit is taken in this way, the trav- 
eling waves asymptotically have the form of a chain 
of one-solitons given by 

dF SF 6G SF SG - = -e 
dZ 

--+-- 
sq* 64 &I sq* 

(21) 
0 

Note that H does not appear here because F is con- 
served by NLS. 

Now consider the two NLS conserved quantities 

To 

E= 
J 

Id2 dT (22) 
0 

j=+oo 
q(ZT) = c rl 

j=-m 

sech v T-cZ-j?-00 
([ I> 

icT+i(v2-c2)Z+ 
277x . 
;J f icro 

To 

.z = i 
s 

(qaTq* - q*aTq) dT, 

0 

(23) 
+O(l/To)v (17) 
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which constitute the energy E and the net energy flux 
J, respectively. 

Even in the perturbed flow, the quantities E and J 
must be constant in Z on traveling wave solutions of 
the form (6) because the integrands in these quantities 
will be functions of the form f( T - cZ) , so that the 
dependence of these quantities on Z is integrated out. 
We may use this fact to obtain necessary (Melnikov) 
conditions for the persistence of traveling waves. 

Suppose that a periodic traveling wave of the NLS 
equation with period TO, represented in polar form by 

q” = Q’(l) exp[ -icr’Z + &(,$)I, 

6 = T - c”Z, (24) 

persists as a periodic traveling wave with period To 
of the perturbed NLS equation. This means there is a 
family of solutions of the perturbed equation given by 

q’ = Q’(t) exp[-icr’Z + is(t)], 

5 = T - c’Z, (25) 

for all 0 < E < ~0, for some EO > 0, and such that 

~~oQelc6) = Q”(5L )ioN) = f%Z), (26) 

uniformly in 5 in the Coo topology of periodic func- 
tions on [O, TO], and 

;eo cr’ = a’, gy ce = co. (27) 

Because the E and J must be conserved quantities on 
these persisting traveling wave solutions, we have 

(28) 

From our assumptions it follows from continuity 
that 

TO 

I( 6E 6G 6E SG 
him~~(q’) = sq*6q + -- 

sq sq* >! 
dT 

0 (SO) 

= 0, (29) 

liio z& = 
6J SG SJ SG 
--+sqsq* sq* 4 

dT 

0 

= 0. (30) 

These are therefore necessary conditions for persis- 
tence. Note that we only need to know the unperturbed 
traveling waves to evaluate these conditions. 

Using (20)) (2 1)) and (24), these conditions be- 
come 

TO 

CE = J (DJQf2 + Q’S;] + g’(Q2>Q2) dS 
0 TO +h'(Z(q)) Q2dt=0, J (31) 

0 

Ta 

CJ = J (DJQ; - 2QQcc + Q*$l + g'(Q2)Q2> 
0 To 

x S,dt+h’(Z(q)) /Q2s,d5=0, (32) 
J 
0 

where we have set Q = Q” and S = $’ for simplicity. 
Integrating the term with integrand -2QQfl in 

the second condition by parts once and using St = 
p/Q2+c (from Eq. (8) ), we obtain a useful alternate 
form of the conditions 

To 

CE = J f<Q, Qr, St> d5 = 0, (33) 
0 

(34) 

where 

+ (g'(Q2> + h'(Z(q) 1 )Q2. (35) 

Recall that the NLS traveling wave solutions (6)- 
( 11) are parameterized by the modulation number m, 

the phase winding number n, the period TO, and two 
parameters K and 6 which lie in the simplex depicted 
in Fig. 1. When evaluated on these solutions at fixed 
values of m, n, and TO, the selection conditions (33) 
and (34) form a 2 x 2 system of nonlinear equations 
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c,y(K,& =o, CJ(K,~) =o, (36) 

in the parameters K and 8. Each condition determines 
some one-dimensional curves in the K, 6 simplex on 
which the condition is satisfied. We call all such curves 
“root-lines”. 

The conditions will be simultaneously satisfied only 
at points in the simplex where the root-lines from 
the two conditions intersect. Because the functions 
CE ( K, 6) and CJ ( K, 8) are generically linearly inde- 
pendent of each other over the K, 6 simplex, this means 
that traveling waves will typically persist only at iso- 
lated points in the simplex. This is the first major in- 
sight we can draw from the selection conditions. 

As proven in CLL2 for the case h(l) = 0, a su.- 
cient condition for an NLS traveling wave to persist as 
some traveling wave, with possibly different periods 
in the amplitude and phase, is that the root lines in- 
tersect transversely at the point representing the trav- 
eling wave. This condition is equivalent to requiring 
that the Jacobian determinant of the conditions CE and 
CJ with respect to the parameters 6 and K is not zero. 
However, it is shown in CLL2 that if another transver- 
sality condition is met, which is difficult to evaluate 
but is met generically, then the wave will persist as a 
fully periodic wave with period TO. 

4. Summary of relevant results from CLLl-CLL3 

We now briefly summarize some relevant results 
obtained in CLL3, which are derived using results of 
CLLl and CLL2, upon which we will build in the 
next section for the specific example of the cubic CGL 
perturbation (3). We point out which results are more 
general than the cubic CGL case wherever they occur. 

We remark that the results described in this sec- 
tion are qualitatively similar for the case of EDFAs, 
for which the CGL saturation term sz in Eq. (3) is 
replaced with 

h’(l(q)) = sZ(q). (37) 

For example, the number of selection conditions and 
perturbation parameters remain the same, and the qual- 
itative role of this term as a nonlinear saturation term 
that increases nonlinearly in magnitude with pulse en- 
ergy remains unaltered. The primary effect of this re- 

placement is therefore only to slightly shift the values 
of K and 6 of the persisting waves. 

We first describe the persistence of the cw waves. 
This case is quite trivial, but is very important for 
understanding the rest of the Letter. 

The cw wave solutions occur at K = 0, at which both 
selection conditions CE and C, reduce to the single 
condition 

+ g’( $a2) + h’(71262) = 0, (38) 

where r) = mr/To. For the CGL perturbation (3) this 
condition yields selection of exactly one cw wave for 
each n and m which occurs at 

&6*=To R - Dg( 2rn/To) 2 
, K=o. 

rnr s (39) 

Different values of m for the same n yield the same 
solution of Eq. (2) (recall that the cw waves are de- 
generate limits of traveling wave families). 

For values of the parameters R, D,, s, n, m, and TO 
such that S* < 1, it is shown in CLL3 for the cubic 
CGL perturbation that root-lines of C, and C, emanate 
tangentially from the selected cw wave at (8, K) = 

(6*, 0) into the simplex. This fact can be exploited to 
prove the existence of crossings in the simplex interior. 
These root-lines can be seen, for example, in Figs. 2 
and 3. Note that the transversality (sufficiency) con- 
dition is not met at the selected cw wave. However, in 
this trivial case, direct calculation of the cubic CGL 
cw waves yields exactly Eq. (39) as the value for 6. 

We now consider the persistence of uncentered lin- 
ear phase traveling waves at S = 1, 0 < K 6 1, which 
have the form (16). In this case, only solutions with 
n = 0 have a possibility of persistence. To see this, 
assume that condition CE (Eq. (33) ) has been satis- 
fied for one of the solutions ( 16) for some choice of 
n, m, TO and at some K. Under this assumption, using 
the fact that the traveling wave parameter p (given by 
Eq. (10)) is identically zero at 6 = 1, the condition 
CJ (Eq. (34) ) reduces to 

TO 

CJ = 2D,c 
s 

Q; dt = 0. (40) 
0 

This immediately implies that c must also vanish, and 
therefore that only traveling waves at S = 1 with n = 0 
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1 

0.8. 

0.6 

UN 
, 1 / / c / / / 0.8. / / / 

7 

Fig. 2. Typical progression for ~1 > 2n, at To = I. m = 2, n = 1, and s = 1. (a) R = 59.22: no crossing exists. (b) R = 104.9, crossing is 
just being born at the selected cw wave. (c) R = 150, persisting crossing can still be seen. 

(because c = 27r~r/Tc) have a possibility of persis- 
tence. Note that this argument is quite general and did 
not depend on the specific choice of the perturbation 
functions g and h. 

We must now discuss whether or not any of the 
linear phase waves with n = 0 and 6 = 1 do in fact 
persist. These solutions have the simple form 

and the perturbation g’ fixed) 

TO 

C(K) = 
J 

(4[71*(2 - K’>Q,’ - Q,“l 
0 

l-0 

+g’(Q:>Q;> dt+h’(l(Qo)) J Q,‘d& = 0, (42) 
0 

x exp[i($v2(2 - K*)Z +a~)]. (41) 

For these waves, using the facts that p = c = St = 
0, both selection conditions are found to reduce to a 
single condition on K (with other parameters TO, m, 

whereQo=~dn(~&,~),~=2mK(~)/To. 
In CLL3 it is shown for the cubic CGL perturba- 

tion (3) that C(K) has exactly one root if and only 
if R is greater than a certain critical value R,. For a 
given choice of m, the root is born at K = 0, 6 = 1, at 
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0.8 

0.6 

K 
0.4 

Fig. 3. Typical progression for m < 2n, at To = 1, m = 1, n = 1, and s = 4.5. (a) R = 60, and no internal crossing is evident. (b) R = 100, 
the crossing exists, and can be seen more clearly in (c). (d) R = 120, and the crossing seen in (b) has disappeared. 

R = R, (all other parameters fixed). At this point the 
selected cw wave, under an infinitesimal CGL pertur- 
bation (0 < E < l), loses stability with respect to 
sideband perturbations with wavenumber k,. There- 
fore, selection begins when a linear phase wave bifur- 
cates from a cw wave in a hopf bifurcation. 

We now summarize results from CLL3 for the per- 
sistence of general periodic traveling waves in the sim- 
plex. In CLL3 it is shown that nontrivial uncentered 
waves can only become selected via bifurcations from 
cw waves if sign(p)n > 0. Thus, we consider here 
only the families for which this condition holds. For 
these families, the results divide into two subcases. 
First of all, for m > 2n, the following facts hold. As 
R is increased from zero, there is a critical value of R 
at which the selected cw wave, under an infinitesimal 

cubic CGL perturbation (0 < E < 1) , loses stability 
with respect to sideband perturbations with wavenum- 
ber k,. At this point a transverse crossing of the root- 
lines bifurcates from the cw wave into the simplex, 
indicating that a nontrivial periodic traveling wave be- 
comes selected. This result is proven by expanding the 
root-lines emanating from the selected cw wave point 
in the parameter K. This traveling wave remains se- 
lected as R --f 00. Fig. 2 illustrates this progression 
with a typical example. 

For the subcase case m < 2n, it is proven in CLL3 
that under an infinitesimal cubic CGL perturbation, if 
s is sufficiently large, there is a critical value of R at 
which the selected cw wave gains stability with re- 
spect to sideband perturbations with wavenumber k,. 
At this point a transverse crossing of the root-lines is 
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introduced into the simplex, indicating that a nontriv- 
ial periodic traveling wave becomes selected. There is 
then a larger value of R at which the selected cw wave 
again loses stability with respect to sideband perturba- 
tions with wavenumber k,, at which point a transverse 
crossing of the root-lines disappears from the simplex. 
Fig. 2 illustrates this second type of progression with 
a typical example. 

Whether or not a persisting solution still exists at 
E = 1, and whether or not it is stable, are two im- 
portant remaining questions. Here, we only make the 
following remarks. 

It was proven for the cubic CGL perturbation by 
TakaE [ 151 that for any E a periodic traveling wave 
with winding number n and modulation number m 
bifurcates from a cw wave (also with winding number 
n) when the cw wave loses stability with respect to 
wavenumber k, sideband perturbations. This result 
establishes the existence for arbitrary values of E and 
an infinitesimal range in R near the bifurcation point. 
The approach used here exactly complements TakEs 
result by allowing existence to be established for an 
arbitrary range in R and an infinitesimal range in E. 

Secondly, we remark that numerical simulations by 
various authors [ 14,131 demonstrate that there are 
regimes in the parameters TO, R, s, and E for which the 
persisting linear phase solution with n = 0 is stable. 

5. Persistence in the autosoliton limit 

We now explore the persistence conditions in the 
autosoliton limit. As TO + co, the only subset of solu- 
tions described by (6)-( 11) that have nonvanishing 
amplitude, and therefore the only solutions that have 
a chance of satisfying the balances required for per- 
sistence by the selection conditions, are those in the 
soliton limit. As described in Section 2, these have 
the asymptotic form ( 17)) where the limit TO -+ co 
is taken while letting K and S tend to 1 along specific 
paths in the simplex, in such a way that the amplitude 
v and speed c remain constant. 

When the conditions CE and CJ are evaluated on the 
asymptotic solutions ( 17) for the CGL perturbation, 
we obtain 

transverse crossing 

I 
6 1 

Fig. 4. Upper right-hand comer of the K, 6 simplex, illustrating 
the tmnsverse crossing in the infinite period limit. 

c, =q* + 
2 R 

D,/3 + 2s/3 - D,/3 + 2~13 

+ O( l/To) = 0, (43) 

CJ = CCE + 4cDg7 + o( 1 /To) = 0, (44) 

for the selection conditions in the simplex. These con- 
ditions are functions of 6, K, and TO because c and r] 
are unique functions of 8, K, and TO for a given choice 
of m and n. 

We first address the case taken strictly in the limit: 
in this limit, the chain of solitons (17) reduces to a 
single one-soliton solution, 

q(ZT) = qs=h(q[T- cZl> 
x exp[icT + ii(v* - c*)Z], (45) 

where 77 and c are the two principal soliton parameters 
(we suppress the two trivial phase parameters). 

From Eq. (43)) it can be immediately seen that the 
one soliton solutions that satisfy CE occur on an ellipse 
in the parameters rl and c determined by the choice 
of R, D, and s. Clearly, of all the choices of r] and 
c for which CE is satisfied, the only one which also 
satisfies CJ occurs at c = 0. This shows that of all the 
one soliton solutions, only the solution (up to trivial 
phase constants), 

q = 7 sech( VT) eiqzq2, (46) 
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0.4 

log(l-6) 
Fig. 5. Same parameters as Fig. 3a, but this time showing a different root-line of CJ. In (a), only the end segments of the dashed C, 
root-line, which lies along the simplex hypotenuse, can be seen. (b) Same picture in alternative coordinates. In these coordinates, both 
lines and the crossing can be clearly seen. 

can persist, where 

R 
’ = D,/3 + 2s/3 ’ (47) 

Sufficiency in this case can also be shown. It was 
shown previously by Pereira and Stenflo [ 71 that the 
cubic CGL equation has an exact solution of the form 

q= Ksech(LT)‘fiMeiNZ, (48) 

where K, L, M, and N are algebraic functions of E, R, 
D, and s (we omit these expressions). When the limit 
of these expressions as E -+ 0 is taken, we find that the 
solitary wave (48) reduces exactly to the persisting 
soliton (46) in the limit. This proves the persistence 
for this one stationary soliton, and the Melnikov anal- 
ysis proves the nonpersistence of all other one-soliton 
solutions. 

We remark that if the perturbation is of cubic CGL 
form except with a saturation term that depends on 
the average intensity I(q) instead of lql*, as in (37)) 
then in the autosoliton limit the saturation effect is 
absent (recall that Z(q) -+ 0 as TO -+ 00). How- 
ever, the results above with the Pereira and Stenflo [ 71 
solution (48) still go through in this case, yielding 
Eq. (47) with s set to zero. 

We now explore the relationship of the persisting 
periodic waves of large period to the persisting one- 
soliton (46). Emanating from the corner of the sim- 
plex are lines of constant speed (c), which range from 

c = 2rn/To at S = 1 to c = --cc on the hypotenuse of 
the simplex. Crossing these lines transversely are hor- 
izontal lines of constant Q, with values ranging from 
~=rnr/Taat~=O,O<S< l,tov=ccat6= 
K = 1. Fig. 4 illustrates the coordinate system created 
by these lines, and also the following observation. Ex- 
pression (44) for CJ implies that CJ will have a root- 
line asymptotic to the c = 0 path in the right-hand cor- 
ner of the simplex, and will have no other root-lines 
nearby points at which C, is satisfied. If the period TO 
or if the gain R is large enough, then expression (43) 
for CE, because it is the equation for an ellipse in c 
and ?,?, implies that a root-line for CE will cross the 
root-line for CJ transversely, as illustrated in Fig. 4. 
In the limit TO + co, this crossing becomes exactly 
orthogonal in the coordinates c and r], ensuring satis- 
faction of the transversality condition. 

Thus we see that every family of NLS traveling 
waves specified by a choice of m and n, in the limit 
TO ---) oo, has a persisting solution with the leading 
order form 

j=+cc 
q(ZT) = c rl sech 

j=-m 3) 

x exp , (49) 

where r] is given by (47). These persisting solutions 
are the periodic analogues of (46). Note that these 
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Fig. 6. Selected pulses for m = 3, n = 1, R = 40, and s = 1, at (a) To = 1, (b) To = 1.5, (c) To = 2.0, (d) To = 2.5. The phase profiles over 
the duration of the individual pulses are seen to flatten out and the speed c goes to zero as To increases, in accordance with predictions. 

pulses are stationary to leading order in l/To. 
The results from CLL2-CLL3 quoted in the last 

section show that periodic wavetrains with nonzero 
speed can persist in the cubic CGL equation. The re- 
sult above shows that if a family of these persisting 
wavetrains has members with periods tending to infin- 
ity, or at values of R tending to infinity, then the speed 
of these persisting solutions in the infinite period limit 
must tend to zero, and the amplitudes and pulse widths 
must tend to the value of 77 given by (47). 

However, we have seen in the previous section that 
some families of persisting solutions, in particular the 
families discussed there with m < 2n related to bi- 
furcations of cw waves, do not continue at large R 
(likewise as Tu + 00). But to the contrary, the re- 
sults here imply that for m < 2n (as well as m > 2n), 

there are persisting solutions. The resolution of this 
apparent paradox lies in the fact that for m < 2n, the 
condition CJ actually has more than one root-line in 
the simplex, and one of these lines is asymptotic to 
the c = 0 line in the upper right-hand corner of the 
simplex and gives persisting solutions in the infinite 
period limit, while the other line gives the families 
discussed in the previous section. Fig. 5a and Fig. 5b 
show another look at the example for the parameters 
corresponding to Fig. 3c, at m = 1, n = 1. Here, the 
other root-line of CJ has been located which lies very 
close to the hypotenuse of the simplex. Both figures 
show the same root-line, but Fig. .5b uses logarithmic 
coordinates which clearly show the nearly orthogonal 
crossing predicted by the analysis. Thus we see that 
there are particular families which are related to per- 
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sisting solitary pulses in the limit, and some which are 
not. 

Fig. 6 shows an example illustrating the basic re- 
sults of this section. The example shown in this figure 
occurs at m = 3, n = 1, with parameters chosen so 
that there is a crossing fairly close to the upper right- 
hand corner of the simplex at TO = 1. Then, the series 
of selected NLS wavetrains for m = 3, n = 1, which 
occur as TO is increased from TO = 1, are shown in 
Figs. 6a-6d. Note that, as predicted by the analysis, 
the phase across each pulses flattens out, and the speed 
tends quickly to zero. Also note that the amplitude and 
pulse width change little as soon as the pulses become 
somewhat separated. 
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