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ABSTRACT

This article reports our results to date on the development of a kind of Melnikov
perturbation technique for PDEs. This technique may be used to determine the persistence
of solutions of PDEs possessing at least several conserved quantities when the PDEs are
perturbed with additional terms, such as damping and driving terms. Although the ideas
behind this technique are of quite general applicability, we specifically focus here on
generalized complex Ginzburg-Landau (GCGL) equations as perturbations of generalized
nonlinear Schrodinger (GNLS) equations. We report results on almost-periodic, traveling
wave, and homoclinic solutions. Complete proofs will appear elsewhere.



1 Introduction

Conservative dyvnamical systems, including integrable PDEs, are generally
structurally unstable to perturbations, for example, those related to damp-
ing and driving. This means that much of the phase space structure of the
unperturbed system will generally be topologically altered by arbitrarily weak
perturbations. For example, elliptic equilibria surrounded by foliations of pe-
riodic orbits may be stablized or de-stablized by an arbitrarily weak perturba-
tion, and the nearby periodic orbits destroyed. Moreover, entirely new types
solutions may be introduced by the perturbation.

Despite these facts, integrable PDEs such as the nonlinear Schrodinger, Kor-
teweg-deVries, and Sine-Gordon equations, to name a few, are widely used to
model natural phenomena such as pulse propagation, water waves, chemical
fronts, etc. It is therefore obviously important to inquire as to how solutions
of the unperturbed model persist when a relevant perturbation is added.

There are several broad classes of techniques/results which have been devel-
oped to answer the persistence question, for various types of systems and with
various levels of rigor. One class of results, which includes the famous KAM,
Moser-Twist, and Aubry-Mather theorems, describes the breakup of tori in
integrable systems under perturbation. Another class of methods, which are
applicable to integrable PDEs supporting soliton solutions, are various “soli-
tonic perturbation techniques”. These techniques usually seek to determine
ODEs that describe the evolution of soliton parameters under the influence of
perturbations. A third class of techniques, closely related to the method pre-
sented in this article, is the Melnikov method for determining the persistence
of periodic orbits and homoclinic orbits in integrable ODEs under perturba-
tion. This method is often used to prove the existence of transverse homoclinic
orbits for integrable systems under perturbation, which in many cases implies
the existence of Smale horseshoes and therefore chaos (for example, see the
books by Wiggins [1,2]).

In this article we report on our attempts to answer the persistence question
for PDEs which possess at least several conserved quantities (in the absence of
perturbation). We present a technique for determining necessary conditions for
the persistence of solutions, which is really the infinite-dimensional analogue
of the Melnikov method, and demonstrate the technique by using it to find
persisting solutions in a particular class of nonlinear PDEs, the generalized
complex Ginzburg-Landau (GCGL) equation’s

0 A = (i + €)0z:A — ih'(JA]")A — eg'(JA])A. (1)

We consider solutions periodic in z on [0, 1]. Here, h and g are real analytic



functions on 0, sc) with at most polynomial growth.

Remark 1.0.1 Under very general conditions, the GCGL equation 1s globally
well-posed 1n H', has smooth solutions (for initial conditions in H'), and a
compact, and even finite-dimensional attractor (if the PDE possesses so-called
inertial manifolds). For ezample, for power law nonlinearity of the form

R'(€) = (£)°,9'(€) = —r + q(¢)", (2)

where o 15 a positive integer, and r and q are positive constants, which includes
the cubic NLS and CGL equations (equations (10) and (11) below), these con-
ditions are shown to hold ezplicitly in [8]. In general, if the functions h'(£)
and g'(£) meet certain conditions, then the above mentioned properties can be
ezplicitly proven to hold by the same methods used in [3]. We shall henceforth
assume that these properties hold.

Equation (1) may be written in the form
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where the functionals H and G are given by

H = j (1841 + h(1A1)) da, (4)

and

G = [ (19:A1 + g(14P) da. (5)
o

More abstract forms for G could be considered, yielding classes of equations
beyond what is sensible to call “Ginzburg-Landau type”. We have chosen the
Ginzburg-Landau form above because it is general enough to show the utility
of the methods contained herein while special enough to keep the number
technical details manageable.

In the limit € — 0, the GCGL equation (1) reduces to the generalized nonlinear
Schrodinger (GNLS) equation

0.A = 10..4 —h'(|A])A = ‘%’ -



in Hamil*onian form. The GCGL may therefore be viewed as the damped and
fautoromeousiy) driven GNLS equation.

De#ring the Poisson bracket of any two functionals F and G to be

1 - -
_%f(éfffi} - 5‘?_:{_52) dr (7)
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the evolution of any functional F under the GNLS flow is governed by

%4“-'}- (8)

Formally, the Hamiltonian H is conserved by the GNLS flow ({H,H} = 0).
Besides H, the GNLS flow also conserves the mass .M and the momentum 7,
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M= [i|4%dz, J == [(A"0;A - Ad.A%)dz,
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respectively, These conserved quantities will play an important role in the
following.

In the special case of h(£) = +£?, the GNLS equation reduces to the celebrated
cubic NLS equation (cNLS),

OiA = i8..A T 2|APA, (10)

which is completely integrable on the real line and also under periodic bound-
ary conditions ([4,5]). In this case there is an infinite family of conserved
functionals in involution with respect to the Poisson bracket (7). The cNLS
is widely applied to physical systems. For example, it is the leading order de-
scription of pulse propagation in optical fibers {6], which is currently an area
of intense research.

The GCGL equation (1) includes the famous cubic Ginzburg-Landau (cCGL)
equation

O A =erA+(e+1)0.A—2(eqti)|AA. (11)
which is obtained by choosing g(¢) = —r€ + g2 and h(¢) = ££?, where r and

g are positive constants. Note that the cCGL reduces to the integrable cNLS
as € — 0. We present some results for this case in this article as a concrete



example of our methods. The cCGL equation is important because it is the
generic armplitude equation governing the evolution of wavepackets in physical
svstems rear criticality 7. There are many analytical results for this equation
in the literature dealing with the existence and regularity of solutions and other
estimates 8-12.3". Also, the cCGL equation displays low-dimensional long-
time behavior 13-17] as evidenced by the existence of an inertial manifold- -
an exponentially attracting, finite-dimensional manifold that is invariant for
positive times.

The question we pose is as follows. For a given choice of h(£) and g(£), and
assuming that some solutions of the GNLS equation (6) for the given choice
of h(¢) are known, which of these solutions persists when the perturbation is
turned on (0 < € << 1)? The notion of persistence will be precisely defined
in section 2. This question can probably never be answered completely for
all GNLS equations, because the GNLS may contain an enormous number of
different kinds of solutions, and also because of the fact that in many cases
we may only be able to obtain necessary conditions for persistence. So far,
we have partially answered this question for periodic traveling waves, various
trivial cases, and for some types of homoclinic solutions. The first type of
solutions are important to understanding wave type behavior, while the third
type are central to the study of chaos and bifurcations in PDEs.

The rest of the paper is organized as follows. In section 2 we derive neces-
sary conditions for the persistence of “almost periodic” (in time) solutions
of the GNLS equation under the GCGL perturbation, and we apply these
criteria to some simple cases. The next two sections discuss traveling wave
solutions-the reader interested only in homoclinic solutions may skip these
sections and proceed directly to section 5. In section 3, the averaging criteria
are applied to traveling wave solutions, and a general theorem is stated. In
section 4 these results are explored for a specific case, the cCGL case, and
the persistence of traveling waves is linked with changes in stability of the
rotating waves. In section 5 the necessary conditions for persistence of GNLS
homoclinics connecting rotating waves are given, and as an example, we prove
in subsection 5.2 that all homoclinics connecting the so-called rotating wave
solutions of GNLS equations are destroyed by GCGL perturbations when the
equations have nonlinearities of a certain power law type. We also demonstrate
numerically in subsection 5.2 that the GCGL perturbation can introduce new
homoclinic orbits.



2  Necessary Criteria for the Persistence of Almost Periodic Solu-
tions

In :his section we study the following question, which was motivated in the
introduction, For which solutions Ag(z,t) of the GNLS equation (6) are there
solutions .1,(z,t) of the GCGL equation (1) such that when € approaches zero,
A.(z,t) approaches A(z,t) smoothly? When this happens, we say that the
solution Ay(z,t) of the GNLS equation persists under the GCGL perturbation.

In this section we use an averaging method to deduce necessary conditions for
solutions of the GNLS which are almost periodic (in time) to persist under
the GCGL perturbation. We start by stating precisely when a solution of the
GNLS equation persists under the GCGL perturbation.

Definition 2.0.1 We will say that an almost periodic solution Aq(z,t) of the
GNLS equation (6) persists under the GCGL perturbation, if and only if there
is a family of solutions A,(z,t) of the GCGL equation (1) such that when e
approaches zero, A.(:,t) approaches A(-,t) in the C* topology, uniformally in

1

We will show that the time average of a particular class of functionals must
vanish on an almost periodic GNLS orbit if that orbit persists under the
GCGL perturbation. This criterion is derived as follows. Consider a functional
F conserved by the GNLS flow. These are real valued functionals of the form

1
FlA]= j f(A, A%, 8. A,8,A°,...,0%4,85A%) dz
1]

where [ is a smooth function of its arguments. In the special case of the cNLS
equation (10), f is a polynomial. The time evolution of this functional under
the GCGL flow is given by
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which does not involve H because F is conserved under the GNLS flow. Taking



the time average of [12) over the interval 0, T gives

s oT)) = FiAd0)) _ —-F-'frj (EF 86 _&F &G
0o 0

S SA*BA " 5-1'.54.')“ yéast.

Due to the assumptions on the regularity of solutions and the existence of
attractors in section 1, the functional F(A.(T)) is necessarily bounded as
T — oo. We therefore have

¥ e 1
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We now assume the existence of a family of almost periodic solutions of the
GCGL equation A, = A.(z,t) that continuously deform in the C* topology
in z to a solution Ay of the GNLS equation. In other words, for all k

lim sup 6%, — 8% 4| =0, uniformally in ¢. (14)
= E

If we call the integrand in (13) S,(z,t), then because of (14),

HI% Sz,t) = So(z,t) uniformly in z and ¢,

which implies

T T 1
| o o : ;
I1m;j_,—ufuf5,{z,t] dzdt = T!!Sa{;c,t;dmdt, uniformly in T > 0.

Hence
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We summarize all the above into the {ollowing proposition.

Proposition 2.0.1 A necessary condition for the persistence of an almost
periodic GNLS solution A, in the sense of definition 2.0.1 is the following. For
every conserved functional F of the GNLS flow, the time average of dF /dt at
Ao evoluing under the perturbed flow must be zero, i.e.

T1
1 §F §G 6F 6G 2 ;
J_F{-‘Jtu 1 i '}"J!(E&'E-{ ﬁ_T)(Aﬂ}dzdt =1}, I[l-'.‘r]'

[t was stated in the abstract and the introduction that the technique which
we are presenting, i.e., the necessary conditions just presented, is a type of
Melnikov method for PDEs (for an introduction to the Melnikov method for
ODEs, see for example the books by Wiggins [1,2]). The connection with the
Melnikov method is as follows. The Melnikov method deals with the persis-
tence of periodic orbits and homoclinic orbits of finite-dimensional integrable
systems. In such systems, the level surfaces of conserved quantities of the un-
perturbed integrable system, along with a time coordinate, fully parameterize
the phase space. This is because each trajectory of the integrable system lies
on a unique intersection of level surfaces, one for each conserved quantity. One
calculates, to leading order in the strength of the perturbation, the deviation
of a perturbed trajectory from these level surfaces. The condition obtained
in this way for a periodic orbit or 2 homoclinic orbit to persist under a per-
turbation, which is generally a sufficient condition, is that this leading order
deviation must vanish separately for every level surface. In other words, to
leading order the perturbed trajectory must return to every level surface from
whence it started in order to persist. The beauty of the method is that only
knowledge of the unperturbed trajectory is required.

The condition given by Proposition 2.0.1 is the exact analogue for infinite-
dimensional systems: It is easy to see from the derivation above that condi-
tion (15) gives the leading order deviation of the functional F over the course
of the orbit. Unlike the finite-dimensional Melnikov method, it is in general
difficult to determine when the necessary condition given above is actually
sufficient for the persistence of solutions.

Nonetheless, we shall describe in this article three cases for which the con-
ditions are sufficient. In one of these cases, the finite-dimensional Melnikov
method is actually used to prove sufficiency. We also explore a case (for ho-
moclinic orbits) for which sufficiency remains unexplored, but for which an
interesting negative result is obtained.

The GNLS equations possess so-called rotating wave solutions which are parametrized



by a positive amplitude a and an integer n, and have the form
Azt = aexpli(2an — wt = ¢)), (16)
where w = 47?n? - h'(a?). These (trivial) solutions are our first example where

the selection criteria prove to be sufficient. Evaluation of the selection criteria
for these solutions for the mass functional .M yields

0 = Ju(Ae) = 2(4## + g'{azj)a’ ] (17)

This necessary condition is also sufficient, because when g'(a?) = —47?n?, the
rotating wave is an exact solution of the GCGL.

Another simple example where the selection criteria are sufficient is the so-
called Lyapunov case. Consider the situation in which G is itself a conserved
functional of the GNLS equation. In this case, the time average of G according
to (12) is given by

14 2
2ef3"5g1 (18)

sA"

Hence, G is decreasing on all solutions of the GCGL equation. If G = 0 for
all complex-valued functions A(z), periodic in = € [0,1], then G may be used
formally like a Lyapunov functional. From proposition 2.0.1, one gets

&G
i 0. (19)
Therefore, the only solutions that can be selected are the critical points of G.
However, under the transformation

A(z,t) = e Az — o1, t),

the GCGL can be written (only in the Lyapunov case, and suppressing the
tilde) as

51.‘1 = —(E+:] g

Comparing this GCGL equation with the selection criteria (19), we see that
solutions satisfying the selection criteria are also solutions of the GCGL equa-
tion. The selection criteria are therefore also sufficient in this case. Note that,



in fact. only traveling wave type solutions persist, because the necessary con-
dition 1mplies that d;4 = 0 for persisting solutions.

3 Persistence of GNLS Traveling Wave Solutions

In this section we consider the persistence of spatially-temporally periodic
traveling wave solutions of the GNLS equation (6). By definition, a traveling
wave solution A(z,t) of (6) has the form

A(z,t) = e "™B(z — ct), (21)

where B is a periodic, complex-valued function of 2 = z — ¢t of period one.

From the fact that B is periodic, it follows from Proposition 2.0.1 that the
selection criteria for GNLS traveling waves to persist is

1
§F 66 6F 6G
0!(:5-—1_5 6;164)[4“]&3_0

for all conserved functionals F of the GNLS equation.

In general the only conserved quantities for the GNLS equation are the mass
M, momentum .J, and the Hamiltonian H, defined in (9) and (4). On the
traveling waves the gradients of these three conserved quantities are linearly
dependent,

M _ M 8T
A Paa ' O

so that it is enough to impose the conditions only with respect to .M and J.
Writing A in the form (21), and writing B = Qe'®, the selection conditions
take the form

j-E.‘FEQ IE.FE(})d w7
J \6QsQ " Q76555 :

where

1

G= [ ((8.:Q) + QX(8:5) + h(@?) ds

10



The first and second conditions using .M and J yield

Fyp = j(f@-@]’ - Q%8.5) - 9'(Q)Q ) =0 (29)
f] ( *(8:5) - 2Q(8.:Q)8.5 + (8:Q)%8.5 - g‘{Q"]Q?a:g) e

respectively.

The question now arises as to if and when these necessary conditions are
actually sufficient. To study this, we must study the system of ODEs for
traveling wave solutions, which we now outline.

Substituting the traveling wave profile (21) into the GCGL equation (1), it
follows that B solves the profile equation

(i + €)B.: B + iaB + ¢8,B — ihk'(|B|*)B — eg'(\B?)B = 0. (24)

The question of the existence of traveling waves for the GCGL reduces to the
question of the existence of periodic orbits with period unity of this equation.

Letting B = Qe'S, P = Q% 8,5 — ¢/2), and R = 8,Q, the profile system

becornes

2

5 +a-H(@)+4(@1)¢) -

—— cQR(25)

oH
£
S ine
El
riea (o + (5 +a-H@) +a@)@), )

where H and the potential V are given by
2

F v -hQY,  (28)

H=%(R2+V[Q|PET})1 V[QrF;TJ Q

and where y = /4 + a.
In order to more conveniently analyze this system, we change coordinates from

(P,Q, R) to action-angle variables (P, ], ©), where I and © are defined by

11



ey
=2 [ \2H-1Q)dQ, (29)

[ (30)
)

and where QV(P, I,~,¢€) and Q'3 P, I,~,¢€) are two consecutive zeros of 2H —
V(Q). The variable T(J, P,v) is the period of the orbit given by

Q!

d
IT(I,Pa)=2 ] = Q—_ (31)
oo VRH(D) - V(Q)

In the new variables the perturbed profile system becomes
azPZEfll:;P:I:e"ln:c:E}! {32.!
a:I=efy( P, 1,0,a,¢c,€), (33)
a:E'=H[PrI:&rc}"i'EfJfPrIta:a?ErE}: [3"1

where Q = Q(P,1,0), R = R(P,1,0) are implicitly defined and

fimmpag (P + (5 +a- W@ +51(@)) @) - gRR. (35)
= (B (e + (5 + o - (@) +41(@) @) = 77eR) (6)
5o (- grear+ 2 (g + (5 e K@) = s(@)e) ).
fi=1oa (52 (ep + (5 +a- (@) + 51@9)@) + 5e) (@7
+2 : - (—%c@ﬂ i g (c—g- & (;—! +a-h(Q)+ y’[Q’})Q)) _

When € = 0, the system reduces to dimension 2 (with P a constant parameter),
and the solutions of this system, for the most part, are families of periodic
orbits corresponding to traveling wave solutions of the GNLS equation. With
the requirement of periodic boundary conditions on [0, 1], these families are
each parameterized by two integers m and n, and two continuous parameters
Imn and Ppy.

12



\We have tne fnllowing general proposition:

Proposition 3.0.2 4 fraveling wave solution of the GNLS equation /6] with
paramelers Pon = F. and Iy = I. (for some fired m and n; persists under
the GCGL perturbation if P, and I, satisfy the following conditions. :j The
parameters P, and I, solve the following system of equations

1 2

AP = (:P W LR R(Q%) +4'(Q%) Q‘) dz =0, (38)
Jo- (5 )
1 pa 2

MyFP 1= (c— +(=+a-h(@)+4(Q%))P+ CRE) dz = 0.(39)
(s )

(11) The Jacobian of (M,(P, 1), My(P,I)) is nonsingular at (P., 1,):

B My, My) |

5P T) £0. (40)

(P L)

The proof of this proposition will be reported elsewhere. It involves an ex-
tension of the usual Melnikov method for periodic orbits. The reason for the
extension is that the system (34) possesses two actions but only one angle.

We make the following important remark:

Remark 3.0.2 The two functionals My(P,I) and My(P,I) are linear com-
binations of the two functionals Jy and Jr of conditions (22) and (23), re-
spectively, and are therefore exactly equivalent to these necessary conditions.
Hence, the proposition tells us that these necessary conditions are actually
sufficient when the condition ({0) is satisfied.

Thinking geometrically, the sufficient condition is that a traveling wave persists
if the curves defined by the conditions M\(P, I, a,¢) and My(P,, 1, a,c) in
the (P, I,) plane intersect transversely at (P, I.).

4 Persistence of Traveling Waves in the Cubic CGL Equation

To illustrate the necessary and sufficient selection conditions for traveling
waves derived in the last section, we give in this section some explicit re-
sults for the case of the cCGL equation (11), which is obtained by choosing
g(€) = —rf + qf* and h(f) = +£?, where r and g are positive constants. We

13



studv the facusing case,

G = erd = (€= 1)0:4 —2(eg—1)A%A, (41}

obtained by choosing the case with the minus sign in equation (11). In the
limit € — 0, the cCGL reduces to the integrable focusing cNLS equation
BA = 18,24 + 211424, (42)

The cNLS equation possesses traveling wave solutions with spatial period one
of the form A = Q(z — ct)e’S==), where

Q(z) = 3/ (dn?(hz,5) — 1+ 8), (43)

r4 & # :

S(z) = a[ (§+ Q—zm) dr, (44)
k2 [ K?

c=4rn:4mﬁ(n,-—§)\'{![l -67](1 _EE)’ (43)

where m > 0 and n > 0 are integers, k and § are real parameters, A =
9m K(x) where K(x) is the complete elliptic integral of the first kind, dn(z, K)
is the Jacobi dnoidal function with modulus «, [I(x. b) is the complete elliptic
integral of the third kind, and p = /A®62(1 — §2)(62 — x2).

The function Q%(z) has a maximum value of A?é? and a minimum value of
A2(§? — k?), which is nonnegative, and oscillates m periods in z over the unit
interval. The phase 5(z) has winding number n.

Hence, as in the general case, the family of ¢NLS traveling wave profiles 1s
parameterized by the positive integer m, the integer n, the sign =, two reals
(6 and x), and arbitrary z-translation and phase shift (which we suppress).
The parameters & and x are constrained to lie within the so-called “simplex”
defined by the inequalities

D<<é<, k<1, A>0. (46)
It can be shown that the transformation from the parameters (A, , &) to those
of system (34) is nonsingular everywhere within the simplex. We may there-

fore apply the results of Proposition 3.0.2 directly. Assuming that the condi-
tions (22) and (23) are satisfied for some («*, §*), The sufficient condition for

14



ersistence turns out to be
P

5 9 S R
T - = 0,
oo, &) (mr.E%)

where Jy and J; are given by (22) and (23), respectively. Therefore, the
sufficient condition for a traveling wave with parameters x and 4 to persist
is a transversal intersection of the curves defined implicitly by Ju(x,d) and
J7(x,68) in the simplex.

Remark 4.0.3 When the modulus x in the amplitude ({3) goes to zero, the
corresponding solution to the focusing ¢NLS ({2] continuously deforms to a
neutrally stable rotating wave,

A(z,t) = mage!@me—(-2min?Eixin?)e) (47)

Such a reduction is a generic feature of traveling wave families of the GNLS,
and we will shortly give results connected the stability of these rotating waves
to persistence of traveling waves.

Remark 4.0.4 Another important limiting case of (4§) is when § — 1 while

holding all the other parameters fized. In this case p = 0 and therefore the
phase S is linear in z

;A c=4mn,

This makes the corresponding solution to the focusing ¢NLS (2] a rotating
wave modulated by a dnoidal function traveling with velocity ¢

Az, 1) = Adn(M(z — ct), e Fme-(4nn?-x2(2-n?)}e)

This case can be analyzed completely without any recourse to numerics.

We now derive the explicit conditions for the persistence of ¢NLS traveling
waves under cCGL perturbation. Under this perturbation, the functional G
becomes

G = [ (18:A]? + qlA* - r[A]?) dz. (48)

-, .

15



In this case. the two conditions (22)-(23) “-r the persistence of traveling waves
vield

Jiag = f (:;i.c?}* -~ Q*8.5)° -rQ* + 2qQ*) dz =0,

]

and

fl( ) - 2Q0,.Q +(6.Q)* +rQ” - Eqﬁ}")ﬂ,.&'dz =0,

respectively. Substituting into these conditions the value of 8,5 in terms of
the amplitude Q from equations (43) and (44), we have

=j(‘*‘ (—Jfﬂ-f)‘-’?*ﬂ(“q}@") dz=0, (49)
j(( a—r)ﬁ+cq—z+2[l+q}pﬁ) ...,-;-Q) (50)

Summarizing these results, we have:

Proposition 4.0.3 A necessary condition for the persistence of the traveling
wave solutions (43)-(44) under the cCGL perturbation ({8) is that the two
parameters k and § must satisfy equations (49)-(50). If the curves in the
simplez defined by these conditions intersect transversely, the conditions are
sufficient.

With straightforward analysis of the selection criteria and linear stability anal-
ysis of the rotating wave solutions, we also have:

Proposition 4.0.4 For all cNLS traveling waves for which § = 1, the only
traveling waves that persist are in the families with n = 0. Of these, for each
family corresponding to a given value of m, a single traveling wave persmts if
and only if r > 2m?qw?. Moreover, the beginning of selection atr = 2miqn? oc-
curs when the n = 0 rotating wave is neutrally stable to sideband perturbations
with wavenumber ky, = 27m under weak cCGL perturbation (0 < € << 1),
i.e., the onset of selection begins with a traveling wave bifurcating from the
n = 0 rotating wave in a kind of pitchfork bifurcation.

To confirm Proposition 4.0.4 numerically, we fixed r =24, m=1,and g=1
(so that r > 2¢n?), and solved numerically the value of x corresponding to the

16



persisting traveling wave, which yielded £ = 0.7960. Therefore the selected
standing wave should be

Aiz.ti = AdnlAz, k)e¥ @M k= 0.7960, A =2K k|=3.9916.(51)

Figure | graphs the amplitude of the dnoidal solution (51), as well as numer-
ical simulations of dnoidal like ¢cCGL solutions for e between 0 and 0.25, at
r = 24, ¢ = 1. The amplitudes of the dnoidal like solutions approach the pre-
dicted dnoidal ¢NLS solution very nicely as € — 0. The cCGL solutions were
approximated numerically by finding the corresponding fixed point solutions
of an 8 complex mode Galerkin truncation of the cCGL equation, and then
reconstructing the solution.

With tedious power series expansions of the curves defined by the selection
criteria in the simplex, and by asymptotic analysis of the linear stability of
rotating waves in the cNLS limit, we can establish a more general result:

Proposition 4.0.5 A traveling wave of the focusing c¢NLS equation with in-
dices n and m must always become selected or deselected under a weak cCGL
perturbation at values of r = r° for which the n'® rotating wave, under weak
cCGL perturbation, undergoes a change in linear stability with respect to side-
band perturbations with wavenumber km as r is varied (all other parameters
fized). This occurs via a pitchfork bifurcation of the traveling wave with the
rotating wave.

Remark 4.0.5 The n = 0 case is already covered by Proposition 4.0.4. In
that particular case, our results are slightly stronger: we could analyze persis-
tence away from the pitchfork bifurcation (for all r) without any recourse to
numerical computation. In the general case, it 1s difficult to do so (ezcept near
the bifurcation with the rotating wave), but numerical demonstrations that the
selection conditions are satisfied for certain traveling waves for large ranges in
r are easily carried out to arbitrary precision, yield positive results, and could
probably be eztended without much trouble into computer assisted proofs. We
have not felt it necessary to carry out such a tedious extension. A numerical
ezample 15 given below.

Remark 4.0.6 Takd¢ [12] has shown that for all € > 0, a traveling wave
with phase winding number n and m spatial oscillations in the unat interval
is created whenever the n'® rotating wave loses stability with respect to the
m'® sideband at a value r = r°. In this analysis, the small parameter is the
difference r — r¢, and therefore this result holds only for a very small range in
r. Our results extend and complements Takdé'’s result by showing that, at least
near the cNLS limit, the selected traveling waves persist for large and even in-
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Fig. 1. Numerical simulation of the dnoidal like cCGL solutions (dashed lines) for
¢ between 0 and 0.25 at r = 24 and g = 1; showing that they approach the dnoidal
cNLS solution (solid line) as e — 0.

finite ranges in v, far removed from the pitchfork bifurcation. The results given
by Propositions 4.0.4 and {.0.5 also establish beyond doubt that the traveling
waves found by Takdé are parametrically related to cNLS traveling waves.

To demonstrate Proposition 4.0.5 numerically, we calculate the root lines of the
selection conditions numerically. Figure 2 shows the root lines in the simplex,
calculated numerically, for n = 1, m = 2, for three different values of r.
At r = 59.22, the root lines intersect exactly at the selected rotating wave
located at (6,x) = (.5,0), and nowhere else. At r = 104.9, the rotating wave
is neutrally stable, the root lines are tangent at the rotating wave point. At
this point a crossing begins to move into the simplex. At r = 150, the crossing
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Fig. 2. This figure shows the root lines of the selection criteria for ¢ = 1 and different
values of r, The circles give numerically calculated values for the full conditions (the
solid lines are fit graphically to the lines implied by the circles). For low values of
r the curves do not intersect. At r = 104.9, which is exactly the value at which
the selected rotating wave loses stability, a crossing is generated and moves into the
simplex as r is increased. For r = 150 the (transversal) crossing can still be found
in the interior of the simplex.

still persists and can be clearly seen.
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5 Necessary Criteria for the Persistence of Homoclinic Solutions

5.1 General Criteria

In this section we present modified but analogous criteria to those derived in
section 2 for the persistence of homoclinic solutions of the GNLS equation
under a GCGL perturbation.

In the case of the ¢cNLS equation (10), which is integrable, it is known that
rotating waves unstable with respect to the m*® sideband perturbation form
the endpoints of spatially periodic, temporally homoclinic orbits [18,19]. In
the general case, for which the GNLS is not integrable, it is less clear as to
when there are homoclinic orbits. Some cases may contain many homoclinics,
others none at all. In any case, in this section we develop a general criteria,
which we later apply to the GNLS and GCGL equations with power law type
nonlinearities, which includes as a subcase the important ¢cNLS and cCGL
equations.

Let Ag(z,t) be a solution of the GNLS equation which 1s homoclinic to a
rotating wave A™(z,t) = ge'imz-wt+®) Clearly, a prerequisite for Ao(z,t)
to persist under the GCGL perturbation is for Alm)(z,t) to persist. Assume
that A,(z,t) is a family of homoclinic orbits for the GCGL equation that
continuously deform in the C™ topology in z to the GNLS homoclinic orbit
Aq(z,t) as € — 0. The time evolution of any GNLS conserved functional
evaiuated at A,(z,t) is given by (equation (12))

dF [ (6F 6C &F &G
E?—Ef(ﬁm*ﬂﬁ)[‘*‘”’

0

Because the value of any functional at the beginning and end of a homoclinic
orbit are equal, integration of the time evolution of F gives

0

_ Fl4oo) = F(—) [ [(EF §G  §F &G
n " ‘_if(m-ﬁ*ﬁi?q’-

)(A,]dzd:. (52)

Call 5,(z,t) the integrand in the above integral (52). As in the first section,
S.(z,t) — So(z,t) uniformly in = and ¢. Define

E.(t) =fs£[m,z)d;.
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Assume also E,(t) — Ey(t) in L'(=oc,0c) in t. This implies

[11"1] E.dt j E.dt uniformlyin T,

because

!fﬂzdt—fﬁodt\ﬁ [ 1Bo- Eddt—0 ase—o.
=T - ' —oa

Therefore, it is possible to interchange limits and integration in the following
way

‘i
Jx(Ao) = Jim f Es dt
T

T
= g hrn E.dt

T—*Dﬂ g={

T
=lim lim [ E.dt

=0 T—eo

-T
=0.

This gives the following necessary condition for the persistence of a given
GNLS homoclinic Ag under a GCGL perturbation:

T [ [6F6G &F &G ’
- [ﬂ!(aa-m 5,-15-1*){%}@&1"” (53)

5.2 Nonpersistence of GNLS Homoclinics

We will use the criteria derived above (53) to prove the following proposition:

Proposition 5.2.1 All homoclinic solutions connecting rotating wave solu-
tions of the GNLS equation with power law nonlinearity (h(¢) = —2£°), 1.e.

O A = 10:.A + 2i| APV A, (54)

are destroyed by any GCGL perturbation generated with the function g(€) =
2;’15,1‘ — v, where p 15 an integer independent of s and r and q are arbitrary
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real numaers.

For exar-n'e, with 5 = 2. Proposition 5.2.1 tells us that all the homoclinic so-
lutions «f the focusing ¢NLS equation (42) which are proven to exist in 18,19,
are destroved by the class of GCGL perturbations above.

We explicitiy give here the proof of Proposition 5.2.1. To prove that the homo-
clinic orbits do not persist, it is enough to show that the necessary condition
does not hold for a specific functional F. For simplicity we choose the mass
functional

M= jl.&;zdz,
0

Hence, the selection criterion (53) becomes

+ oo

Tu(Ao) = j

(&}
(& ]]
L

1
f (18- 40f? + 21 Aol — 7/ Aof?) dzdt =0, (
o]

where Ag is a candidate GNLS homoclinic orbit. A prerequisite for this inte-
gral to vanish is that the rotating wave to which the homoclinic orbit Ay is
associated also satisfies the selection criterion (is a persistent solution). Other-
wise, the integrand would be finite as ¢ — o0, and the integral would diverge.
Another way to arrive at this is simply the obvious requirement that the ro-
tating wave associated with the homoclinic must persist if the homoclinic is
to persist! [n any case, this yields

g'(a®) = 2qa®®"? —r = —4n'n?.
Observe that we can write the selection condition (53) in terms of the Hamul-

tonian H, of the mass .M, the L* norm, and the L?* norm of A4g, in the
following way:

-0 1 1
2
J(A4p) = f ('}'1! -rM+ 2qf|.4g|2pdz - :fl.*lg.';z' dz) dt .
=00 o] 0

The mass and the Hamiltonian are conserved quantities, therefore, they can
be evaluated at the end points of the homoclinic, i.e., at the rotating wave. In
this way J(Ay) becomes

oo 1 1
Tl ALy = j (h’n’a* = ga“ —ra® 429 f | Ag|?dz + 2 f | Aq[2 dm) dt.
]
-0 (1] ]
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Now, Hélder's inequality gives
1 1 3
f A3 P dz > ([ .4ﬁ2dz) :
2 o

where the equality is hold only if | Ap! 1s constant in z. Using this last inequality
(for both integrals) and the fact that for all homoclinic orbits |dg| is not
constant in z, the following inequality is obtained

+00 1 1
JulAo) = f (4#271!&2 - %a?' —ra® + 24;/ |4p/?P dz + %f‘:i,;.lz’ d:) dt
- o Q

=" ]

2
= f (4#1“_2{:2 - %az' —ra? + 2q.MP + -.‘U‘I') dt
5

T 2 2
= f (41T=n2ﬂ2 — —a® —ra? + 2qa* + ;az') dt
s

= (56)

Therefore no homoclinic trajectory of the GNLS equation (54) with simple
power law nonlinearities (and linear pumping) terminating at a rotating wave
can persist under the GCGL perturbation generated by g({) = %‘EP - rt.

This is not the end of the story, however. Something special can happen if the
parameters in the perturbation are chosen such that a rotating wave is selected
which is neutrally stable under weak GCGL perturbation. If homoclinic orbits
exist in the unperturbed GNLS equation, such rotating waves always lie at
the endpoints of families of homoclinic orbits, where the family shrinks to
zero size. Although these “critical” rotating waves do not possess homoclinic
orbits, the degeneracy associated with these rotating waves (neutral stability
under perturbation), suggests -at some delicate and complicated structure,
including homoclinic orbits, m.ay be created near the critical rotating waves
under the GCGL perturbation.

In fact, we can give a numerical example of a case where a homoclinic or-
bit is created out of the critical rotating wave by the perturbation: For the
focusing ¢NLS equation (42), the n = 0 rotating wave has homoclinic orbits
related to instabilities in the m = 1 direction for a; > = (there are addi-
tional homoclinics as well at higher amplitudes- see [18,19] for derivations,
explicit expressions, etc). The perturbation we consider is given explicitly by
the cCGL equation (11), which is parameterized by the parameters r, g and
€. In the following, we fix ¢ = 1/2. Numerically, we have located a homoclinic
orbit of the cCGL equation, which exists along a one-dimensional curve in the
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Fig. 3. The solid curve (with circles) gives the locations in the ¢, r parameter plane
at which a homoclinic orbit of the cCGL equation exists. The dashed cur.- shows
the neutral stability curve of the n = 0 rotating wave. The two curves con.«rge as
¢ — 0, implying that the homoclinic orbits converges to the critical rotating wave.

¢, r parameter plane, which reduces to the critical rotating wave (for which
ag = 7) as € — 0. Figure 3 shows the numerically obtained curve, which was
found by “shooting” experiments to locate the homoclinic orbit. In the Fig-
ure, therefore, the convergence of the cCGL homoclinic to the critical rotating
wave is implied by the convergence of the homoclinic curve (solid line) to the
neutral curve of the n = 0 rotating wave (dashed line).

Remark 5.2.1 This family of codimension I homoclinic orbits in the cCGL
equation is slightly different structurally from the cNLS homoclinics associated
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with the n = 0 rotating wave, which were destroyed by the perturbation: whereas
the eNLS homochinics leave and return to the cNLS rotating waves along direc-
tions associated with instabilities in the k; wavenumber direction, the ¢CGL
homochnics leave along a k, direction but return along the kg direction-the
direction of pure amplitude perturbations of the rotating wave, which became a
stable direction for the rotating wave under the cCGL perturbation. This is in
fact what one would ezpect generically-a hemoclinic orbit will generally return
along the weakest stable direction.

6 Conclusion

We have presented a technique by which the persistence of solutions of PDE'’s
possessing conserved quantities may be determined when the PDE’s are per-
turbed. We have shown that this method provides necessary and sufficient
criteria for the persistence of traveling wave solutions. Detailed results us-
ing this technique were reported for the cNLS and cCGL equations. It was
also proven that all homoclinic solutions connecting rotating wave solutions
are destroyed by GCGL perturbation when the nonlinearities are of a simple
power law type. Finally, 2 numerical result was reported showing that the
perturbation can create new homoclinic structure.
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