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Abstract

In this work we formulate and analyze a mathematical model for the transmission of West
Nile Vi rus (WNV) infection between vector (mosquito) and avian population. We find the Basic
Reproductive NumberR̃0 in terms of measurable epidemiological and demographic parameters.R̃0
is the threshold condition that determines the dynamics of WNV infection: if̃R0 ≤ 1 thedisease
fadesout, and for R̃0 > 1 the disease remains endemic. Using experimental and field data we
estimateR̃0 for several species of birds. Numerical simulations of the temporal course of the infected
bird proportion show damped oscillationsapproaching the endemic value.
© 2005 Society for Mathematical Biology. Published by Elsevier Ltd. All rights reserved.

1. Introduction

West Nile virus (WNV) is a mosquito-borne flavivirus and human, equine, and avian
pathogen. It is believed that birds are its natural reservoir. Humans, horses and probably
other vertebrates are circumstantial hosts; that is, they can be infected by an infectious
mosquito but they do not transmit the disease. Then, WNV is maintained in nature in a
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mosquito–bird–mosquito transmission cycle (Campbell et al., 2002; Hayes, 1989; Komar
et al., 2003; Lanciotti et al., 1999; Montaño-Hirose, 2002).

The primary vectors of WNV areCulexspp. mosquitoes, although the virus has been
isolated from at least 29 more species of ten genera (Campbell et al., 2002).

When an infected mosquito bites a bird, it transmits the virus; the birds may then
develop sufficiently high viral titers during three to five days to infect another mosquito.

The virus can also be passed via vertical transmission from a mosquito to its offspring
(Baqar et al., 1993; Swayne et al., 2000) and this increases the survival of WNV in nature.
It is believed that this was the mechanism responsible for the persistence of the epidemics
in New York after the winter of 1999.

It has been found that birds from certain species may become infected by WNV after
ingesting it from an infected dead animal or infected mosquitoes, both natural food items
of some species (Komar et al., 2003).

Most WN viral infections are subclinical, but clinical infections can range in severity
from uncomplicated WN fever to fatal meningoencephalitis (Campbell et al., 2002).

The virus has been isolated from blood samples of humans, some other mammals, birds
and mosquitoes only in countries of Africa, Asia and Europe. In the 50s, 40% of the
human population in the Egyptian Delta Nile was seropositive, and around 3000 clinical
cases were registered in South Africa (Vargas-García and Cárdenas Lara, 2002). WNV
was detected for the first time in North America in 1999, during an outbreak involving
humans, horses, and birds in New York City (CDC,1999). Since then it has spread rapidly
to most of the United States (CDC,2001). In this country between 1999 and 2001, WNV
was associated with 149 cases of neurological diseases in humans, 814 cases of equine
encephalitis and 11,932 deaths in the avian population. During 2003, 9858 human cases
and 14 deaths were reported (CDC,2004).

In this paper we use a system of nonlinear differential equations to explore the
temporal mosquito–bird cycle transmissionof WNV. It consists of the interactions among
susceptible and infective individuals of the two species assuming that the transmission of
the disease is only by mosquito bites and vertical transmission in the vector population.
Birds that arrive in the community by birth or immigration are all susceptible. We study
the stability of the steady states of the system and we find the basic reproductive number
R̃0 which controls the dynamics of the infection. We conclude that this basic reproductive
number is a better measure of the capacity of the species to transmit the infection than the
competence indexc j used in the literature.

We show that the infection presents oscillationsintrinsic to its dynamics, which should
not beconfused with seasonal oscillations. The model also shows that after the outbreak
the infection seems to disappear for a period of time, but one should be aware that under
certain circumstances a second peak may appear.

In this paper we are concerned with the importance of the vector vertical transmission
to thedynamics of the infection. As was mentioned above, this mechanism of transmission
is believed to be responsible for the permanence of the infection even with scarce avian
population. Our model supports this thesis. We find that if the coefficient of vertical
transmission is high enough, the dynamics of the infection depends more strongly on the
vectors than on the host population. Also the endemic proportion of infected birds grows
with the vertical transmission.
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Another important issue which we address is the impact of the epidemics on the host
population. The model predicts that during the first two or three years after the outbreak
the impact on the host population is very important. After this period of time the epidemic
tends to an endemic steady state with an infected proportion that depends onR0. In our
simulations this proportion is not bigger than 0.05% of the avian population.

In the next section we formulate the model; inSections 3and4 we find and analyze the
equilibrium points of the model.Section 5contains numerical results and applications, and
in Section 6we present theconclusions.

2. Formulation of the model

Let Na(t) and Nv(t) be the avian and vector populations at timet , respectively. We
assume that, in a given period of time, the mosquito population is constant and equal to
Nv , with birth and death rate constants equal toµv . For the avian population we assume
a constant recruitment rateΛa due to births and immigration; total deaths occur at a rate
µaNa whereµa is the per capita mortality rate of birds. Thus, the differential equation
which governs the disease-free avian population dynamics is

dNa

dt
= Λa − µaNa.

It is well known that the solutions of this equation approach the equilibriumΛa/µa as
t → ∞.

Let Sa(t), Ia(t), andRa(t) denote the number of susceptible, infective, and recovered in
the avian population; andSv(t), Iv(t) thenumber of susceptible and infective in the vector
population. Due to its short life, a mosquito never recovers from the infection (Gubler,
1986), and we do not consider the recovered class in this population.

The infection rate for each species depends on the biting rate of mosquitoes, the
transmission probabilities, as well as on the number of infective and susceptible of each
species.

The biting rateb of mosquitoes is the average number of bites per mosquito per day.
This rate depends on a number of factors, in particular, climatic ones, but for simplicity in
this paper we assumeb constant, typical values are once every two or three days (Gubler,
1986). The number of vectors per bird is given byNv/Na, thus a particular bird receives
on averageb(Nv/Na) bites per unit of time.

The transmission probability is the probability that an infectious bite produces a new
case in a susceptible member of the other species. Here, the transmission probabilities
from vectors to birds and from birds to vectors are denoted byβa andβv, respectively.

Then, the infection rates per susceptible bird and susceptible vector are given by

bβa
Nv

Na

Iv
Nv

= bβa

Na
Iv

and

bβv

Ia

Na
.
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We assume that the infected birds recover at a constant rateγa, and wedenote byαa

the specific death rate associated with WNV in the avian population. Then, the adjusted
infectious period taking into account mortality rates is given by 1/(γa + µa + αa). We
shall assume thatαa ≤ γa; this is consistent with observations as can be seen inTable 2of
Section 5.

As mentioned in the Introduction, some species of mosquitoes can transmit WNV
vertically. Here, we assume that a fraction 0≤ p ≤ 1 of the progeny of infectious
mosquitos is infectious.

Combining the elements above, we arrive at the following system ofdifferential
equations:

dSa

dt
= Λa − bβa

Na
Iv Sa − µaSa

dIa

dt
= bβa

Na
Iv Sa − (γa + µa + αa)Ia

dRa

dt
= γa Ia − µaRa

dSv

dt
= µvSv + (1 − p)µv Iv − bβv

Na
IaSv − µv Sv

dIv
dt

= pµv Iv + bβv

Na
IaSv − µv Iv

dNa

dt
= Λa − µaNa − αa Ia

(2.1)

with the conditionsSa + Ia + Ra = Na andSv + Iv = Nv .
The first orthant in theSa Ia RaSv Iv Na space is positively invariant for system (2.1)

since the vector field on the boundary does not point to the exterior. Furthermore, since
dNa/dt < 0 for Na > Λa

µa
and Nv is constant, all trajectories in the first orthant enter or

stay inside the region

T+ =
{

Sa + Ia + Ra = Na ≤ Λa

µa
, Sv + Iv = Nv

}

.

The continuity of the right-hand side of (2.1) implies that unique solutions exist on
a maximal interval. Since solutions approach, enter or stay inT+, they are eventually
bounded and hence exist fort > 0, (Coddington and Levinson, 1955). Therefore, the initial
value problem for system (2.1) is mathematically well posed and biologically reasonable
since all variables remain nonnegative.

In order to reduce the number of parameters and simplify system (2.1) wenormalize the
bird and vector population

sa = Sa

Λ/µa
, ia = Ia

Λ/µa
, ra = Ra

Λ/µa
, na = Na

Λ/µa
,

sv = Sv

Nv

, iv = Iv
Nv

.
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Sincera = na − sa − ia andsv = 1 − iv, we can omit the equations forra andsv .
Then, system (2.1) is equivalent to the four dimensional non-linear system of ODEs for the
proportions:

dsa

dt
= µa − bβam

na
ivsa − µasa

dia
dt

= bβam

na
ivsa − (γa + µa + αa)ia

div
dt

= bβv

na
ia(1 − iv) − (1 − p)µviv (2.2)

dna

dt
= µa − µana − αaia,

in the subsetΩ = {0 ≤ sa, 0 ≤ ia, sa + ia ≤ na ≤ 1, 0 ≤ iv ≤ 1}. Herem = Nv

Λa/µa
is the

ratio between the vector population and the disease-free equilibrium bird population.

3. Steady states of the model

We find the steady states of Eq. (2.2) by equating the derivatives on the left-hand side
to zero and solving the resulting algebraic equations. We first analyze the case 0≤ p < 1.
The points of equilibrium(ŝa, îa, îv, n̂a) satisfy the following relations

ŝa = µa − (γa + µa + αa)îa
µa

n̂a = µa − αa îa
µa

(3.3)

îv = µabβv îa

(bβvµa − αa(1 − p)µv)îa + (1 − p)µvµa
.

Substituting (3.3) in the corresponding second equilibrium equation of (2.2), we obtain that
the solutions arêia = 0, and the roots of the equation

r (ia) = Ai2a + Bia + C (3.4)

where

A = [bβvµa − αa(1 − p)µv]
αa

µa
,

B = 2αa(1 − p)µv − bβvµa − (1 − p)µv(γa + µa + αa)R0,

C = µa(1 − p)µv(R0 − 1),

and

R0 = mb2βaβv

(1 − p)µv(γa + µa + αa)
. (3.5)

The solution̂ia = 0 gives the disease-free equilibrium pointP0, whose coordinates are
ŝa = 1, îa = 0, îv = 0, andn̂a = 1.
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We are looking for nontrivial equilibrium solutions in the interior ofΩ . From (3.3) it
can be seen that this impliesîa ∈ (0,

µa
µa+γa+αa

). Evaluatingr (ia) at the end points of the
interval we obtain

r (0) = µa(1 − p)µv(R0 − 1)

r

(

µa

γa + µa + αa

)

= −µ2
abβv(γa + µa)

(γa + µa + αa)2
− (1 − p)µvµa(γa + µa)

2

(γa + µa + αa)2
< 0.

WhenR0 = 1, the roots ofr (ia) are 0 and̂ia = − B
A with B = −bβvµa−(1−p)µv(γa+

µa − αa) < 0 sinceby assumptionαa ≤ γa. Then, îa is less than zero ifA < 0. ForA > 0
it can be seen easily thatîa >

µa
γa+µa+αa

.
When R0 < 1, the value of the polynomialr (ia) is negative at the endpoints of the

interval. The conditions tohave at least one root in the mentioned interval are

(a) A < 0

(b) 0 < − B
2A <

µa
µa+γa+αa

(c) B2 − 4AC ≥ 0,

but it can be seen that in this case (b) and (c) arenot compatible, therefore there are no
roots in the interval.

If R0 > 1 thenr (0) > 0, therefore there exists a unique root in the interval, which
implies the existence of a unique equilibrium pointP1 = (ŝa, îa, îv, n̂a) in the interior
of Ω .

Thus, we have proved that forR0 ≤ 1, P0 is the only equilibrium point inΩ , but in the
caseR0 > 1 theendemic equilibriumP1 will also lie in Ω .

TheBasic Reproductive Numberof a disease is the average number of secondary cases
that one infectious individual produces during its infectious period in a totally susceptible
population.

For the WNV infection, the number of infections produced by a single bird during its
infectious period in a susceptible mosquito population is given by

mb

γa + µa + αa
βv.

Analogously, the number of infections in a susceptible avian population produced by a
single infectious mosquito during its lifespan is given by

b

(1 − p)µv

βa.

The geometric mean of these quantities,
√

R0, represents the average number of
secondary infections produced by a single infectious bird or mosquito during its infectious
period. ThereforẽR0 =

√
R0 is the Basic Reproductive Number of WNV disease.

Now, we proceed to analyze the casep = 1. The reported values ofp are rather
small ascan be seen inTable 2. However, we present this limit case to illustrate the
impact of vertical transmission on the permanence of the infection. Notice thatR0 → ∞
when p → 1.
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The equilibrium points of (2.2) in thiscase, areP0 and the solution of the equations

ŝa = µa − (γa + µa + αa)îa
µa

(3.6)

n̂a = µa − αa îa
µa

îv = 1
(3.7)

whereîa is a root of the polynomial

q(ia) = αa(γa + µa + αa)i 2
a − (bβam + µa)(γa + µa + αa)ia + bβamµa (3.8)

in the interval(0,
µa

γa+µa+αa
). Evaluatingq(ia) at the end points, we obtain

q(0) = bβamµa > 0

q

(

µa

γa + µa + αa

)

= − µ2
a(µa + γa)

γa + µa + αa
< 0

so that (3.8) has aunique rootîa in (0,
µa

γa+µa+αa
). Therefore, if p = 1, the endemic

equilibrium stateP1 is inΩ independently of the values of the rest of the parameters. In this
case, as we will show in the next section, the infection will remain endemic independently
of the other parameters.

4. Stability analysis

In this section we study the stability of the steady states of system (2.2). We start with
the case 0≤ p < 1. Linearizing around the disease-free equilibriumP0, we obtain the
matrix

DF(P0) =









−µa 0 −mbβa 0
0 −(γa + µa + αa) mbβa 0
0 bβv −(1 − p)µv 0
0 −αa 0 −µa









(4.9)

where DF denotes the derivative of the vector fieldF given by the right-hand side of
Eq. (2.2). The eigenvalues of (4.9) are −µa of multiplicity two, and the roots of the
polynomial

λ2 + (γa + µa + αa + (1 − p)µv)λ + (γa + µa + αa)(1 − p)µv(1 − R0).

The roots of a polynomial of order two have negative real parts if and only if its coefficients
are positive. In our case, both coefficients are positive if and only ifR0 < 1. Therefore, the
disease-free equilibriumP0 is locally asymptotically stable forR0 < 1, and unstable for
R0 > 1.

WhenR0 > 1, P0 becomes an unstable equilibrium point, and the endemic equilibrium
P1 emerges inΩ . The local stability of this point is governed by the roots of the
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characteristic equation Det(λI − DF(P1)) = 0 whereλI − DF(P1) is given by
























λ + mbβaîv
n̂a

+ µa 0
mbβaŝa

n̂a
−mbβaîvŝa

n̂2
a

−mbβaîv
n̂a

λ + γa + µa + αa −mbβaŝa

n̂a

mbβaîv ŝa

n̂2
a

0 −bβv(1 − îv)

n̂a
λ + bβv îa

n̂a
+ (1 − p)µv

bβv îa(1 − îv)

n̂2
a

0 αa 0 λ + µa

























.

Adding the second row ofλI − DF(P1) to the first one, and using Eq. (2.2) in equilibrium

γa + µa + αa = mbβaîv ŝa

îan̂a

bβv îa
n̂a

+ (1 − p)µv = bβv îa

îvn̂a

(4.10)

we obtain the equivalent matrix
























λ + µa λ + mbβaîv ŝa

îan̂a
0 0

−mbβaîv
n̂a

λ + mbβaîv ŝa

îan̂a
−mbβaŝa

n̂a

mbβaîv ŝa

n̂2
a

0 −bβv(1 − îv)

n̂a
λ + bβv îa

îvn̂a

bβv îa(1 − îv)

n̂2
a

0 αa 0 λ + µa

























.

Expanding the determinant of this matrix by the last row, it can be seen that the roots of
Det(λI − DF(P1)) are−µa and the roots of

λ3 + Pλ2 + Qλ + R = 0 (4.11)

where

P = µa

ŝa
+ mbβaîv ŝa

îan̂a
+ bβv îa

îvn̂a

Q = µabβv îa

ŝa îvn̂a
+ mb2βaβv ŝa îv

n̂2
a

+ mbβaiv(µan̂a − αa îaŝa)

ian2
a

R = µamb2βaβv((n̂a − ŝa) + ŝa îv)

n̂3
a

− αamb2βaβv ŝa îa
n̂3

a
.

(4.12)

From the Routh–Hurwitz criterion, it follows that all eigenvalues of Eq. (4.11) have
negative real parts if and only ifP > 0, R > 0 andP Q > R. Now, it is clear thatP > 0.
Using the relation̂na − ŝa = îa + r̂a = (γa+µa)

µa
îa, R becomes

R = mb2βaβv îa((γa + µa) − αaŝa)

n̂3
a

+ µamb2βaβv ŝaîv
n̂3

a
.
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Since we have assumedαa ≤ γa thenαa ≤ γa + µa, also ŝa < 1 therefore R > 0.
Finally, the inequalityP Q > R can be proved easily. Thus, we have proved thatP1 is
locally asymptotically stable.

Now, we analyze the stability of the equilibria in the casep = 1. The eigenvalues
of the Jacobian around the disease-free equilibriumP0 are −µa and the roots of the
polynomial

λ2 + (γa + µa + αa)λ − mb2βaβv.

Since the last coefficient of this equation is negative, thenP0 is alwaysunstable.

On the other hand, for the endemic equilibriumP1, the eigenvalues are−µa, −bβv îa
n̂a

besides the roots of the polynomial

λ2 +
(

mbβa

n̂a
+ γa + 2µa + αa

)

λ + (γa + µa + αa)

(

mbβa

n̂a
+ µa

)

+ αa
mbβaŝa

n̂2
a

,

which have negative real part since the coefficients are positive. Therefore,P1 is locally
asymptotically stable.

The above results can be summarized in the following theorem.

Theorem 1. If 0 ≤ p < 1, then the disease-free equilibrium P0 is unique and locally
asymptotically stable for R0 < 1. When R0 > 1, P0 becomes unstable, and there appears a
new endemic equilibrium P1 locally asymptotically stable. If p= 1, P0 is alwaysunstable,
and P1 is locally asymptotically stable.

In the caseαa = 0, we can be more precise about the kind of stability of the equilibrium
pointsP0 andP1.

Whenαa = 0 andR0 ≤ 1, we can actually prove global stability ofP0. In this case
na(t) → 1, and system (2.2) becomes

dsa

dt
= µa − mbβaivsa − µasa

dia
dt

= mbβaivsa − (γa + µa)ia

div
dt

= bβvia(1 − iv) − (1 − p)µviv.

(4.13)

We define the following Lyapunov function inΩ

L = ia + mbβa

(1 − p)µv

iv. (4.14)

The orbital derivative ofL is given by

L̇ = −mbβa(1 − sa)iv − (γa + µa)(1 − R0(1 − iv))ia (4.15)

which is less than or equal to zero forR0 ≤ 1. The maximal invariant subset contained in
L̇ = 0 consists of thesa-axis. In thisset, system (4.13) reduces to

dsa

dt
= µa − µasa
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Table 1
West Nile Virus competence index for eight species of birds

Common name s i d (days) c j

Blue jay 1.0 0.68 3.75 2.55
Common grackle 1.0 0.68 3 2.04
House finch 1.0 0.32 5.5 1.76
American crow 1.0 0.50 3.25 1.62
House sparrow 1.0 0.53 3 1.59
Ring-billed gull 1.0 0.28 4.5 1.26
Black-billed magpie 1.0 0.36 3 1.08
Fish crow 1.0 0.26 2.8 0.73

Datatakenfrom Komar et al. (2003).

dia
dt

= 0

div
dt

= 0.

From these equations we see thatsa(t) → 1, ia(t) = 0, iv(t) = 0 for t ≥ 0. Therefore,
from the LaSalle–Lyapunov theorem (Hale, 1969) it follows that P0 is locally stable and
all trajectories starting inΩ approachP0 for R0 ≤ 1.

Thus, we have proved the global asymptotical stability ofP0 for R0 ≤ 1 andαa = 0.
Whenαa = 0 andR0 > 1, (2.2) becomes a three-dimensional system. In this case,

global stability of P1 can be proved using results of competitive systems and compound
matrices as inEsteva and Vargas (1998).

5. Numerical results

To estimate experimentally the transmission dynamics, Komar (Komar et al., 2003)
exposed 25 bird species to WNV by infectious bites ofCulex tritaeniorhynchus. He
analyzed viremia data to determine values for susceptibility(s), mean daily infectiousness
(i ), duration of infectious viremia(d), and competence index(c j ) for each species

c j = s × i × d.

Susceptibility is the proportion of birds that become infected as a result of the exposure;
mean daily infectiousness is the proportion of exposed vectors that become infectious
per day, and duration of infectious viremia is the number of days that birds maintain an
infectiousviremia.

The competence index is calculated as a function of the viremia that the bird species
develops after mosquito-borne infection and it is a measure of the species efficiency as a
transmitter.Table 1shows thevalues ofs, i , d andc j obtained inKomar et al. (2003)for
eight species.

In the context of our models = βa, i = βv , d = 1
γ

andc j = βaβv

γ
. The sameauthors

estimated the proportion of fatal infections of birds exposed to WNV by mosquito bites and
the mean number of days to death. From these data we calculate the daily disease mortality
rateαa as the proportion of deaths divided by the mean number of days to death.
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Table 2
Epidemiological and demographic parameters of model (2.2)

Common name βa βv γa αa µa µv m R̃0
(day−1) (day−1) (day−1) (day−1)

Blue jay 1.0 0.68 0.26 0.15 .0002 .06 5 5.89
Common grackle 1.0 0.68 0.33 .07 .0001 .06 5 6.97
House finch 1.0 0.32 0.18 0.14 .0003 .06 5 4.57
American crow 1.0 0.5 0.31 0.19 .0002 .06 5 4.58
House sparrow 1.0 0.53 0.33 0.1 .0002 .06 5 5.08
Ring-billed gull 1.0 0.28 0.22 0.1 .0003 .06 5 4.28
Black-billed magpie 1.0 0.36 0.33 0.16 .0001 .06 5 3.92
Fish crow 1.0 0.26 0.36 .06 .0002 .06 5 3.60

Approximated values ofµa for each bird species were obtained fromOliver Jr.
(1961a,b), The University of Michigan Museum of Zoology (2004), and are given in
Table 2. As mentioned before, typical values of the biting rateb are once every two or three
days. Here we assumedb = .5 day−1. The reported values for the lifespan of mosquitoes
vary from weeks to months. An average value is two or three weeks for females (Gubler,
1986).

Using the values of the parameters inTable 1, we estimated R̃0 for each bird species.
We assumed in all of the cases that the ratiom = Nv

Λa/µa
= 5. In Komar et al. (2003)the

value ofm variesfrom ten to fifteen, but since the experiments consisted of caged birds
with a predeterminate amount of mosquitoes that were allowed to bite as many times as
wanted, we believe that this situation increasedm artificially. The probability of vertical
transmission was taken asp = 0.007 according toDohm et al. (2002), Goddard et al.
(2003).

According toTable 1, the American crow and the house finch are more competent than
thehouse sparrow, however the number of secondary infections produced by individuals
of these species is less than the corresponding number produced by the house sparrows.
The same phenomenon is observed betweenthe blue jay and the common grackle.

We noticed that the disease mortality rates of the American crow, the house finch
and the blue jay are significantly greater than the corresponding ones for the house
sparrow, and the common grackle. The role ofdisease-related mortality in the dynamics
of the disease is reflected iñR0 but not in the competence indexc j . Thedisease-related
death rateαa reduces the average infectious period, and consequently the number of
infection transmissions per infective. Thus, a high disease mortality is likely to diminish
the efficiency of a species as a transmitter. This suggests thatR̃0 is a better measure of the
epidemiological importance of a given species.

Fig. 1 illustrates the time course of the infected bird proportion for the blue jay, the
American crow and the house sparrow. In this figure we only present the first epidemic
peak.

In Fig. 2we present how ast tends to infinity the solutions oscillate to the endemic value
îa. This behaviorcan be explained in terms ofR0. The proportion of susceptible mosquitoes
infected by one infectious bird is(mbβv/(γa + µa + αa))sv, analogously the proportion
of susceptible birds which are infected by one mosquito is(bβa/(1 − p)µv)sa. Therefore,
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Fig. 1. Numerical simulation of system (2.2). The graphs show the temporal course of the proportion of infected
birds. The parameters are given inTable 2and the initial conditions aresa = 1, ia = 0, iv = 0.001,na = 1.

Fig. 2. Asymptotic behavior of the solutions ofFig. 1.

if in addition to R0 > 1, we haveR0sasv > 1 thenboth fractionssa and sv decrease
and the infectious proportionsia and iv first increase to a peak and then both decrease
because there are not sufficient susceptibles to be infected and some of the infected ones
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Fig. 3. Numerical solutions of system (2.2) for different values ofp. Thegraphs show the temporal course of the
proportion of infected fish crow whenp = 0.007, 0.05, 0.5. The corresponding values ofR̃0 are 3.60, 3.68 and
5.07, respectively.

recover or die. When the susceptible fractions get large enough due to recruitment of new
susceptibles, there are secondary smaller epidemics, and thus the solution oscillate to the
endemic equilibrium.

In Fig. 3 we observe the increment of WNV activity when vertical transmission
increases. The values ofp in these simulations are takenmuch larger than the values
reported, in order to appreciate its effect on the dynamics of the epidemics. We notice
that as p increases, the endemic equilibrium is reached faster and practically without
oscillations. This means that WNV does not need a high recruitment of susceptible birds
to remain in nature. In this case the dynamics of the infection is dominated by the vector
population.

6. Conclusions

The dramatic appearance of the epidemic of WNV in the northeast part of the United
States, is an unsettling remainder of the ability of viruses to jump continents. The
subsequent spread of WNV shows that, although arboviral transmission cycles are usually
very complex, the basic mechanisms for the introduction and maintenance of arbovirus
in new areas are the movementpattern of birds, the existence of efficient vectors and
susceptible hosts.

In this paper we developed and analyzed a mathematical model to understand the
dynamics of WNV disease. We obtained conditions for the maintenance of the disease
when the virus is introduced in a certain region.
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We found that

R̃0 =
√

R0 =

√

mb2βaβv

(γa + µa + αa)(1 − p)µv

is the basic reproductive number for the disease, that is, the mean number of secondary
cases produced by a primary infective when introduced in a susceptible population. Then,
if R̃0 is less than one, the disease will fade out since an infective individual will be replaced
with less than one new case. On the other hand, ifR̃0 is greater than one, the infected
fraction of the mosquito and bird populations will approach an endemic steady state.

Usually, registers of WNV cases in the avian population are based on the number of
dead birds found. Thus, epidemiological reports indicate high WNV prevalence in species
with high disease mortality rate. This could lead to the idea that the most vulnerable species
to the disease, like the American crow, are the best transmitters and consequently the main
responsibles for the spread of the disease. Nevertheless, we found that in some cases,
the basic reproductive number̃R0 of such species is less than the corresponding one for
species considered less competent. Thus, according toTable 2, the number of secondary
infections derived from an infected house sparrow is bigger than the corresponding number
derivedfrom an American crow, even when the latter is considered a better transmitter. An
explanation of this fact is that species with high disease mortality rate could not be such
as good transmitters due to the fact that their infection period ends sooner. Then, statistics
based on reported dead animals or laboratory experiments which do not take into account
mortality are not sufficient to estimate the real importance of a bird species in the disease
spread. Implementation of other mechanisms of surveillance such as sampling, would give
a more accurate idea about disease prevalence in the bird population and the importance of
the different species on the diffusion of the disease.

In Figs. 1and2, we observe that maximal prevalence in the avian population is very
high when the disease is introduced for the first time. In the three cases analyzed, between
two and four tenths of the avian population got infected during the first epidemic peak.
This first outbreak fades out after around 30 days followed by a period of time where
the infection seems to disappear. After this period a secondepidemic peak appears. It is
interesting to notice that the longer it takes for the second peak to appear, the higher it
is. This is explained by the fact that when the period between the first two peaks is large,
more susceptible birds are recruited by the end of this period, and their number becomes
close to the initial data. Thus, the situation is more alike to the one of initial conditions.
Af ter the second peak, the infected population will approach the endemic prevalence value
through damped oscillations. It is interesting toobserve that in the three cases, even when
the firstoutbreak is very high, the endemic prevalence is not: less than 0.05% of the total
population size. Therefore, it seems that extinction of a bird population due to the disease
could be possible only during the first two or three years after the first outbreak.

The quantityR̃0 grows with the mosquito population; thus, the disease spreads more
rapidly when birds migrate to a region with higher mosquito density. Vertical transmission
in the vector population is also a risk factor for the spread of WNV. The model predicts
that if vertical transmission is sufficiently high, the disease can be maintained forever,
even in regions with scarce avian population. This is shown inFig. 3. Here, as vertical
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transmission increases, the proportion of endemic infected birds grows, and the epidemic
peaks tend to disappear. Then the proportion of infected birds becomes less dependent
upon the recruitment of susceptible birds.

The effect of the disease mortality associated with the infection on the dynamics of avian
population is of great importance, and this depends uponαa. Low values ofαa would have
a small effect on the population size, while high values will cause the disease to fade out
sinceR̃0 decreases whenαa increases, and eventually the population size will return to its
original values. Therefore, intermediate values ofαa are the ones which can cause more
damage to the population.

In Mexico, WNV has circulated at least since 2002 (Blitvich et al., 2003; Estrada-Franco
et al., 2003; Loroño-Pinto et al., 2003). However, the reports ofthe virus activity in birds
show that the infection has caused a negligible epidemiological impact. In 2004 from
January to October, among 4833 studied samples, 171 were serologically positive and only
in two cases was the virus isolated (SSa,2004). The main question is why WNV activity
in Mexico is rather mild compared with that in the United States. Some studies point to the
hypothesis that the presence in the region of other arboviruses such as dengue and Saint
Louis encephalitis can cause cross immunity to WNV (Tesh et al., 2002). In our model,
this hypothesis could be reflected on a reduction of the transmission probabilities βa and
βv, that would drive the basic reproductive numberR̃0 to values less than one. However,
thisquestion should be a subject of further studies.

The control of WNV is very difficult to achieve due mainly to the large number
of species of wild bird and mosquito susceptibles to it, and to the fact that some
vectors present vertical transmission. For this reason, the most likely scenario for the
spread of WNV is that it will remain endemic in the Americas. Even if the endemic
prevalence is rather low, environmental changes (prolongated rains, droughts, hurricanes,
etc.) could modifyR0 giving rise to more severe outbreaks, or in contrast, disappearance
of the disease. Also, the immune response among bird species and cross-immunity due
to exposure to other flaviviruses, together with the natural selection of the strongest
individuals, could reduce the levels of endemicity.
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