IIMAS SEMINAR

Monica Torres

Purdue University

On the solvability of the equation div $\mathbf{v} = F$

March 13, 2013

Abstract

In this talk we present results concerning the solvability of the equation $\operatorname{div} \mathbf{v} = F$ in various spaces of functions for the vector field \mathbf{v} . We find necessary and sufficient conditions on the right hand side F that guarantees the existence of solutions \mathbf{v} . We show that the equation $\operatorname{div} \mathbf{v} = F$ has a solution \mathbf{v} in the space of continuous vector fields vanishing at infinity if and only if F belongs to a closed subspace of the dual of $BV_{\frac{m}{m-1}}(\mathbb{R}^m)$ (where the latter is the space of functions in $L^{\frac{m}{m-1}}(\mathbb{R}^m)$ whose distributional gradient is a vector valued measure). In particular we show that, even though $\operatorname{div}(\nabla u) = \Delta u = f \in L^m(\mathbb{R}^m)$ need not have a solution $u \in C^1(\mathbb{R}^m)$ to each $f \in L^m(\mathbb{R}^m)$, there corresponds a continuous vector field \mathbf{v} vanishing at infinity such that $\operatorname{div} \mathbf{v} = f$. This is a joint work with Thierry De Pauw.