Menu:

Ondas estacionarias en flujos sobre fondos periódicos

por el

Dr. Carlos García Azpeitia

IIMAS, UNAM

Resumen:
In this talk we present the formation of steady waves in two dimensional fluids under a current with mean velocity c flowing over a periodic bottom. Using a formulation based on the Dirichlet-Neumann operator we establish the unique continuation of steady solution from the trivial solution for a flat bottom with the exception of a sequence of resonant velocities $c_{k}$. Furthermore, we prove that at least two steady solutions persist from a non-degenerate $S^{1}$-orbit of steady waves for a flat bottom. Consequently, for near flat bottoms, we obtain the persistence of at least two steady waves close to the $S^{1}$-orbit of Stokes waves bifurcating from the velocities $c_{k}$.

Miércoles 28 de agosto, 2019
17:00 hrs.
Salón 203, Edificio Anexo, IIMAS

Informes: coloquiomym@gmail.com, o al 5622-3564.