
3.8 Linear Systems in Three Dimensions 371

x
y

z

Figure 3.65
Phase space for system

dY/dt = AY.
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Figure 3.66
Graphs of x(t), y(t) and z(t) for the indicated

solution in Figure 3.65.

solution shown, all three coordinates tend to infinity as t increases because the eigen-

vector for the eigenvalue λ1 has nonzero components for all three variables.

Three linearly independent solutions of this system are given in the first example

of this section (see page 361). We can see from this example that linear systems in three

dimensions can be quite complicated (even when many of the coefficients are zero).

However, the qualitative behavior is still determined by the eigenvalues, so it is possible

to classify these systems without completely solving them.

EXERCISES FOR SECTION 3.8

1. Consider the linear system

dY
dt = AY =







0 0.1 0

0 0 0.2

0.4 0 0
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Check that the functions
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and
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are solutions to the system.
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2. If a vector Y3 lies in the plane determined by the two vectors Y1 and Y2, then we

can write Y3 as a linear combination of Y1 and Y2. That is,

Y3 = k1Y1 + k2Y2

for some constants k1 and k2. But then

k1Y1 + k2Y2 − Y3 = (0, 0, 0).

Show that if

k1Y1 + k2Y2 + k3Y3 = (0, 0, 0),

with not all of k1, k2, and k3 = 0, then the vectors are not linearly independent.

[Hint: Start by assuming that k3 6= 0 and show that Y3 is in the plane determined

by Y1 and Y2. Then treat the other cases.] Note that this computation leads to the

theorem that three vectors Y1, Y2, and Y3 are linearly independent if and only if the

only solution of

k1Y1 + k2Y2 + k3Y3 = (0, 0, 0)

is k1 = k2 = k3 = 0.

3. Using the technique of Exercise 2, determine whether or not the following sets of

three vectors are linearly independent.

(a) (1, 2, 1), (1, 3, 1), (1, 4, 1)

(b) (2, 0,−1), (3, 2, 2), (1,−2,−3)

(c) (1, 2, 0), (0, 1, 2), (2, 0, 1)

(d) (−3, π, 1), (0, 1, 0), (−2,−2,−2)

In Exercises 4–7, consider the linear system dY/dt = AY with the coefficient matrix A
specified. Each of these systems decouples into a two-dimensional system and a one-

dimensional system. For each exercise,

(a) compute the eigenvalues,

(b) determine how the system decouples,

(c) sketch the two-dimensional phase plane and one-dimensional phase line for the

decoupled systems, and

(d) give a rough sketch of the phase portrait of the system.

4. A =






0 1 0

−1 0 0

0 0 2






5. A =







−2 3 0

3 −2 0

0 0 −1







6. A =






1 0 3

0 −1 0

−3 0 1






7. A =







1 0 0

0 2 −1

0 −1 2
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Exercises 8–9 consider the properties of the cubic polynomial

p(λ) = αλ3 + βλ2 + γ λ+ δ,

where α, β, γ , and δ are real numbers.

8. (a) Show that, if α is positive, then the limit of p(λ) as λ→∞ is∞ and the limit

of p(λ) as λ→−∞ is −∞.

(b) Show that, if α is negative, then the limit of p(λ) as λ → ∞ is −∞ and the

limit of p(λ) as λ→−∞ is∞.

(c) Using the above, show that p(λ) must have at least one real root (that is, at

least one real number λ0 such that p(λ0) = 0 ). [Hint: Look at the graph of

p(λ).]

9. Suppose a + ib is a root of p(λ) (so p(a + ib) = 0). Show that a − ib is also a

root. [Hint: Remember that a complex number is zero if and only if both its real and

imaginary parts are zero. Then compute p(a + ib) and p(a − ib).]
In Exercises 10–13, consider the linear system dY/dt = BY with the coefficient ma-

trix B specified. These systems do not fit into the classification of the most common

types of systems given in the text. However, the equations for dx/dt and dy/dt decou-

ple from dz/dt . For each of these systems,

(a) compute the eigenvalues,

(b) sketch the xy-phase plane and the z-phase line, and

(c) give a rough sketch of the phase portrait of the system.

10. B =






−2 1 0

0 −2 0

0 0 −1






11. B =







−2 1 0

0 −2 0

0 0 1







12. B =






−1 2 0

2 −4 0

0 0 −1






13. B =







−1 2 0

2 −4 0

0 0 0







In Exercises 14–15, consider the linear system dY/dt = CY. These systems do not fit

into the classification of the most common types of systems given in the text, and they

do not decouple into lower-dimensional systems. For each system,

(a) compute the eigenvalues,

(b) compute the eigenvectors, and

(c) sketch (as best you can) the phase portrait of the system. [Hint: Use the eigenval-

ues and eigenvectors and also vectors in the vector field.]

14. C =






−2 1 0

0 −2 1

0 0 −2






15. C =







0 1 0

0 0 1

0 0 0
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16. For the linear system

dY
dt = AY =







2 −1 0

0 −2 3

−1 3 −1













x
y
z






:

(a) Show that V1 = (1, 1, 1) is an eigenvector of the coefficient matrix by com-

puting AV1. What is the eigenvalue for this eigenvector?

(b) Find the other two eigenvalues for the matrix A.

(c) Classify the system (source, sink, . . . ).

(d) Sketch (as best you can) the phase portrait. [Hint: Use the other eigenvalues

and find the other eigenvectors.]

17. For the linear system

dY
dt = AY =







−4 3 0

0 −1 1

5 −5 0













x
y
z






:

(a) Show that V1 = (1, 1, 0) is an eigenvector of the coefficient matrix by com-

puting AV1. What is the eigenvalue for this eigenvector?

(b) Find the other two eigenvalues for the matrix A.

(c) Classify the system (source, sink, . . . ).

(d) Sketch (as best you can) the phase portrait. [Hint: Use the other eigenvalues

and find the other eigenvectors.]

18. Consider the linear system

dY
dt = BY =







−10 10 0

28 −1 0

0 0 −8/3













x
y
z






.

(This system is related to the Lorenz system studied in Section 2.8, and we will use

the results obtained in this exercise when we return to the Lorenz equations in Sec-

tion 5.5.)

(a) Find the characteristic polynomial and the eigenvalues.

(b) Find the eigenvectors.

(c) Sketch the phase portrait (as best you can).

(d) Comment on how the fact that the system “decouples” helps in the computa-

tions and in sketching the phase space.
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Many years later, when Glen finally retires from writing math texts, he decides to join

his friends and former collaborators Paul and Bob. He opens an ice creme store be-

tween Paul’s and Bob’s cafés. Let z(t) be Glen’s profits at time t (with x(t) and y(t)
representing Paul’s and Bob’s profits, respectively). Suppose the three stores affect each

other in such a way that

dx
dt = −y + z
dy
dt = −x + z
dz
dt = z.

19. (a) If Glen makes a profit, does this help or hurt Paul’s and Bob’s profits?

(b) If Paul and Bob are making profits, does this help or hurt Glen’s profits?

20. Write this system in matrix form and find the eigenvalues. Use them to classify the

system.

21. Suppose that at time t = 0, both Paul and Bob are making (equal) small profits, but

Glen is just breaking even [x(0) = y(0) are small and positive, but z(0) = 0].

(a) Sketch the solution curve in the xyz-phase space.

(b) Sketch the x(t)-, y(t)-, and z(t)-graphs of the solution.

(c) Describe what happens to the profits of each store.

22. Suppose that at time t = 0 both Paul and Bob are just breaking even, but Glen is

making a small profit [x(0) and y(0) are zero, but z(0) is small and positive].

(a) Sketch the solution curve in the xyz-phase space.

(b) Sketch the x(t)-, y(t)-, and z(t)-graphs of the solution.

(c) Describe what happens to the profits of each store.
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