EXERCISES FOR SECTION 3.5

In Exercises 1-4, each of the linear systems has one eigenvalue and one line of eigenvectors. For each system,
(a) find the eigenvalue;
(b) find an eigenvector;
(c) sketch the direction field;
(d) sketch the phase portrait, including the solution curve with initial condition $\mathbf{Y}_{0}=(1,0)$; and
(e) sketch the $x(t)$ - and $y(t)$-graphs of the solution with initial condition $\mathbf{Y}_{0}=(1,0)$.

1. $\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}-3 & 0 \\ 1 & -3\end{array}\right) \mathbf{Y}$
2. $\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}2 & 1 \\ -1 & 4\end{array}\right) \mathbf{Y}$
3. $\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}-2 & -1 \\ 1 & -4\end{array}\right) \mathbf{Y}$
4. $\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}0 & 1 \\ -1 & -2\end{array}\right) \mathbf{Y}$

In Exercises 5-8, the linear systems are the same as those in Exercises 1-4. For each system,
(a) find the general solution;
(b) find the particular solution for the initial condition $\mathbf{Y}_{0}=(1,0)$; and
(c) sketch the $x(t)$ - and $y(t)$-graphs of the solution. (Compare these sketches with the sketches you obtained in the corresponding problem from Exercises 1-4.)
5. $\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}-3 & 0 \\ 1 & -3\end{array}\right) \mathbf{Y}$
6. $\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}2 & 1 \\ -1 & 4\end{array}\right) \mathbf{Y}$
7. $\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}-2 & -1 \\ 1 & -4\end{array}\right) \mathbf{Y}$
8. $\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}0 & 1 \\ -1 & -2\end{array}\right) \mathbf{Y}$
9. Given a quadratic $\lambda^{2}+\alpha \lambda+\beta$, what condition on α and β guarantees
(a) that the quadratic has a double root?
(b) that the quadratic has zero as a root?
10. Evaluate the limit of $t e^{\lambda t}$ as $t \rightarrow \infty$ if
(a) $\lambda>0$
(b) $\lambda<0$

Be sure to justify your answer.
11. Consider the matrix

$$
\mathbf{A}=\left(\begin{array}{rr}
0 & 1 \\
-q & -p
\end{array}\right)
$$

where p and q are positive. What condition on q and p guarantees:
(a) that A has two real eigenvalues?
(b) that A has complex eigenvalues?
(c) that A has only one eigenvalue and one line of eigenvectors?
12. Let

$$
\mathbf{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Define the trace of \mathbf{A} to be $\operatorname{tr}(\mathbf{A})=a+d$. Show that \mathbf{A} has only one eigenvalue if and only if $(\operatorname{tr}(\mathbf{A}))^{2}-4 \operatorname{det}(\mathbf{A})=0$.
13. Suppose

$$
\mathbf{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

is a matrix with eigenvalue λ such that every nonzero vector is an eigenvector with eigenvalue λ, that is, $\mathbf{A Y}=\lambda \mathbf{Y}$ for every vector \mathbf{Y}. Show that $a=d=\lambda$ and $b=c=0$. [Hint: Since $\mathbf{A} \mathbf{Y}=\lambda \mathbf{Y}$ for every $\mathbf{Y}, \operatorname{try} \mathbf{Y}=(1,0)$ and $\mathbf{Y}=(0,1)$]
14. Suppose λ is an eigenvalue for the matrix

$$
\mathbf{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

and suppose that there are two linearly independent eigenvectors \mathbf{Y}_{1} and \mathbf{Y}_{2} associated to λ. Show that every nonzero vector is an eigenvector with eigenvalue λ. What does this imply about a, b, c, and d ?
15. Suppose the two functions

$$
\mathbf{Y}_{1}(t)=e^{\lambda t} \mathbf{V}_{0}+t e^{\lambda t} \mathbf{V}_{1} \quad \text { and } \quad \mathbf{Y}_{2}(t)=e^{\lambda t} \mathbf{W}_{0}+t e^{\lambda t} \mathbf{W}_{1}
$$

are equal for all t. Show that $\mathbf{V}_{0}=\mathbf{W}_{0}$ and $\mathbf{V}_{1}=\mathbf{W}_{1}$.
16. Suppose λ_{0} is a repeated eigenvalue for the 2×2 matrix \mathbf{A}.
(a) Show that $\left(\mathbf{A}-\lambda_{0} \mathbf{I}\right)^{2}=\mathbf{0}$ (the zero matrix).
(b) Given an arbitrary vector \mathbf{V}_{0}, let $\mathbf{V}_{1}=\left(\mathbf{A}-\lambda_{0} \mathbf{I}\right) \mathbf{V}_{0}$. Using the result of part (a), show that \mathbf{V}_{1} is either an eigenvector of \mathbf{A} or the zero vector.

In Exercises 17-19, each of the given linear systems has zero as an eigenvalue. For each system,
(a) find the eigenvalues;
(b) find the eigenvectors;
(c) sketch the phase portrait;
(d) sketch the $x(t)$ - and $y(t)$-graphs of the solution with initial condition $\mathbf{Y}_{0}=(1,0)$;
(e) find the general solution; and
(f) find the particular solution for the initial condition $\mathbf{Y}_{0}=(1,0)$ and compare it with your sketch from part (d).
17. $\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}0 & 2 \\ 0 & -1\end{array}\right) \mathbf{Y}$
18. $\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{ll}2 & 4 \\ 3 & 6\end{array}\right) \mathbf{Y}$
19. $\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{ll}4 & 2 \\ 2 & 1\end{array}\right) \mathbf{Y}$
20. Let $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
(a) Show that if one or both of the eigenvalues of \mathbf{A} is zero, then the determinant of A is zero.
(b) Show that if $\operatorname{det} \mathbf{A}=0$, then at least one of the eigenvalues of \mathbf{A} is zero.
21. Find the eigenvalues and sketch the phase portraits for the linear systems
(a) $\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right) \mathbf{Y}$
(b) $\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}0 & -2 \\ 0 & 0\end{array}\right) \mathbf{Y}$
22. Find the general solution for the linear systems
(a) $\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right) \mathbf{Y}$
(b) $\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}0 & -2 \\ 0 & 0\end{array}\right) \mathbf{Y}$
23. Consider the linear system

$$
\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) \mathbf{Y}
$$

(a) Find the eigenvalues.
(b) Find the eigenvectors.
(c) Suppose $a=d<0$. Sketch the phase portrait and compute the general solution. (What are the eigenvectors in this case?)
(d) Suppose $a=d>0$. Sketch the phase portrait and compute the general solution.
24. The slope field for the system

$$
\begin{aligned}
& \frac{d x}{d t}=-3 x-y \\
& \frac{d y}{d t}=4 x+y
\end{aligned}
$$

is shown at the right.
(a) Determine the type of the equilibrium point at the origin.
(b) Calculate all straight-line solutions.
(c) Plot the $x(t)$ - and $y(t)$-graphs $(t \geq 0)$ for the initial conditions $A=(-1,2)$, $B=(-1,1), C=(-1,-2)$, and $D=(1,0)$.

3.6 SECOND-ORDER LINEAR EQUATIONS

Throughout this chapter we have used the harmonic oscillator as an example. We have solved the second-order equation and its associated system of equations in a number of different cases. Now it is time to summarize all that we have learned about this important model.

Second-Order Equations versus First-Order Systems

As we know, the motion of a harmonic oscillator can be modeled by the second-order equation

$$
m \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+k y=0,
$$

where $m>0$ is the mass, $k>0$ is the spring constant, and $b \geq 0$ is the damping coefficient. Since $m \neq 0$, we can also write this equation in the form

$$
\frac{d^{2} y}{d t^{2}}+p \frac{d y}{d t}+q y=0
$$

where $p=b / m$ and $q=k / m$ are nonnegative constants, and the corresponding linear system is

$$
\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}
0 & 1 \\
-q & -p
\end{array}\right) \mathbf{Y} .
$$

As we will see in this section, any method to compute the general solution of the second-order equation also gives the general solution of the associated system, and vice versa. In particular we can use the Linearity Principle to produce new solutions from

