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EXERCISES FOR SECTION 3.5

In Exercises 1–4, each of the linear systems has one eigenvalue and one line of eigen-

vectors. For each system,

(a) find the eigenvalue;

(b) find an eigenvector;

(c) sketch the direction field;

(d) sketch the phase portrait, including the solution curve with initial condition

Y0 = (1, 0); and

(e) sketch the x(t)- and y(t)-graphs of the solution with initial condition Y0 = (1, 0).

1. dYdt =
(

−3 0

1 −3

)

Y 2. dYdt =
(

2 1

−1 4

)

Y

3. dY
dt =

(

−2 −1

1 −4

)

Y 4. dYdt =
(

0 1

−1 −2

)

Y

In Exercises 5–8, the linear systems are the same as those in Exercises 1–4. For each

system,

(a) find the general solution;

(b) find the particular solution for the initial condition Y0 = (1, 0); and

(c) sketch the x(t)- and y(t)-graphs of the solution. (Compare these sketches with the

sketches you obtained in the corresponding problem from Exercises 1–4.)

5. dYdt =
(

−3 0

1 −3

)

Y 6. dYdt =
(

2 1

−1 4

)

Y

7. dY
dt =

(

−2 −1

1 −4

)

Y 8. dYdt =
(

0 1

−1 −2

)

Y

9. Given a quadratic λ2 + αλ+ β, what condition on α and β guarantees

(a) that the quadratic has a double root?

(b) that the quadratic has zero as a root?

10. Evaluate the limit of teλt as t →∞ if

(a) λ > 0 (b) λ < 0

Be sure to justify your answer.
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328 CHAPTER 3 Linear Systems

11. Consider the matrix

A =
(

0 1

−q −p

)

,

where p and q are positive. What condition on q and p guarantees:

(a) that A has two real eigenvalues?

(b) that A has complex eigenvalues?

(c) that A has only one eigenvalue and one line of eigenvectors?

12. Let

A =
(

a b
c d

)

.

Define the trace of A to be tr(A) = a + d. Show that A has only one eigenvalue if

and only if (tr(A))2 − 4 det(A) = 0.

13. Suppose

A =
(

a b
c d

)

is a matrix with eigenvalue λ such that every nonzero vector is an eigenvector with

eigenvalue λ, that is, AY = λY for every vector Y. Show that a = d = λ and

b = c = 0. [Hint: Since AY = λY for every Y, try Y = (1, 0) and Y = (0, 1).]

14. Suppose λ is an eigenvalue for the matrix

A =
(

a b
c d

)

,

and suppose that there are two linearly independent eigenvectors Y1 and Y2 associ-

ated to λ. Show that every nonzero vector is an eigenvector with eigenvalue λ. What

does this imply about a, b, c, and d?

15. Suppose the two functions

Y1(t) = eλtV0 + teλtV1 and Y2(t) = eλtW0 + teλtW1

are equal for all t . Show that V0 =W0 and V1 =W1.

16. Suppose λ0 is a repeated eigenvalue for the 2× 2 matrix A.

(a) Show that (A− λ0I)2 = 0 (the zero matrix).

(b) Given an arbitrary vector V0, let V1 = (A−λ0I)V0. Using the result of part (a),

show that V1 is either an eigenvector of A or the zero vector.
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In Exercises 17–19, each of the given linear systems has zero as an eigenvalue. For

each system,

(a) find the eigenvalues;

(b) find the eigenvectors;

(c) sketch the phase portrait;

(d) sketch the x(t)- and y(t)-graphs of the solution with initial condition Y0 = (1, 0);

(e) find the general solution; and

(f) find the particular solution for the initial condition Y0 = (1, 0) and compare it with

your sketch from part (d).

17. dYdt =
(

0 2

0 −1

)

Y 18. dYdt =
(

2 4

3 6

)

Y 19. dYdt =
(

4 2

2 1

)

Y

20. Let A =
(

a b
c d

)

.

(a) Show that if one or both of the eigenvalues of A is zero, then the determinant

of A is zero.

(b) Show that if detA = 0, then at least one of the eigenvalues of A is zero.

21. Find the eigenvalues and sketch the phase portraits for the linear systems

(a) dY
dt =

(

0 2

0 0

)

Y (b) dY
dt =

(

0 −2

0 0

)

Y

22. Find the general solution for the linear systems

(a) dY
dt =

(

0 2

0 0

)

Y (b) dY
dt =

(

0 −2

0 0

)

Y

23. Consider the linear system

dY
dt =

(

a 0

0 d

)

Y.

(a) Find the eigenvalues.

(b) Find the eigenvectors.

(c) Suppose a = d < 0. Sketch the phase portrait and compute the general solu-

tion. (What are the eigenvectors in this case?)

(d) Suppose a = d > 0. Sketch the phase portrait and compute the general solu-

tion.
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24. The slope field for the system

dx
dt =−3x − y
dy
dt = 4x + y

is shown at the right.

(a) Determine the type of the equilibrium

point at the origin.

(b) Calculate all straight-line solutions.

(c) Plot the x(t)- and y(t)-graphs (t ≥ 0)

for the initial conditions A = (−1, 2),

B = (−1, 1), C = (−1,−2), and

D = (1, 0).

−3 3

−3

3

A
B

C

D x

y

3.6 SECOND-ORDER LINEAR EQUATIONS

Throughout this chapter we have used the harmonic oscillator as an example. We have

solved the second-order equation and its associated system of equations in a number of

different cases. Now it is time to summarize all that we have learned about this impor-

tant model.

Second-Order Equations versus First-Order Systems

As we know, the motion of a harmonic oscillator can be modeled by the second-order

equation

md2y
dt2

+ bdydt + ky = 0,

where m > 0 is the mass, k > 0 is the spring constant, and b ≥ 0 is the damping

coefficient. Since m 6= 0, we can also write this equation in the form

d2y
dt2

+ p dydt + qy = 0,

where p = b/m and q = k/m are nonnegative constants, and the corresponding linear

system is

dY
dt =

(

0 1

−q −p

)

Y.

As we will see in this section, any method to compute the general solution of the

second-order equation also gives the general solution of the associated system, and vice

versa. In particular we can use the Linearity Principle to produce new solutions from
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