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determine the direction (clockwise or counterclockwise) and approximate shape of the

solution curves by sketching the phase portrait (see Figure 3.29).

The x(t)- and y(t)-graphs of solutions oscillate with increasing amplitude. The

period of these oscillations is 2π/(
√

7/2) = 4π/
√

7 ≈ 4.71, and the amplitude in-

creases like et/2. We sketch the qualitative behavior of the x(t)- and y(t)-graphs in

Figure 3.30.

Either Paul and Bob will stay precisely at the break-even point (x, y) = (0, 0),

or the profits and losses of their cafés will go up and down with increasing amplitude

(a boom to bust to boom business cycle). Also the equilibrium point at the origin is

unstable, so even a tiny profit or loss by either café eventually leads to large oscillations

in the profits of both cafés. It would be very difficult to predict this behavior from just

looking at the linear system without any computations.

−2 2

−2

2

x

y

Figure 3.29
Phase portrait for

dY
dt =

(
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Y.
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Figure 3.30
x(t)- and y(t)- graphs of a solution for the system

dY
dt =

(

2 1

−4 −1

)

Y.

EXERCISES FOR SECTION 3.4

1. Suppose that the 2× 2 matrix A has λ = 1+ 3i as an eigenvalue with eigenvector

Y0 =

(

2+ i
1

)

.

Compute the general solution to dY/dt = AY.

2. Suppose that the 2× 2 matrix B has λ = −2+ 5i as an eigenvalue with eigenvector

Y0 =

(

1

4− 3i

)

.

Compute the general solution to dY/dt = BY.
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3.4 Complex Eigenvalues 311

In Exercises 3–8, each linear system has complex eigenvalues. For each system,

(a) find the eigenvalues;

(b) determine if the origin is a spiral sink, a spiral source, or a center;

(c) determine the natural period and natural frequency of the oscillations,

(d) determine the direction of the oscillations in the phase plane (do the solutions go

clockwise or counterclockwise around the origin?); and

(e) using HPGSystemSolver, sketch the xy-phase portrait and the x(t)- and y(t)-
graphs for the solutions with the indicated initial conditions.

3. dYdt =
(

0 2

−2 0

)

Y, with initial condition Y0 = (1, 0)

4. dYdt =
(

2 2

−4 6

)

Y, with initial condition Y0 = (1, 1).

5. dYdt =
(

−3 −5

3 1

)

Y, with initial condition Y0 = (4, 0)

6. dYdt =
(

0 2

−2 −1

)

Y, with initial condition Y0 = (−1, 1)

7. dYdt =
(

2 −6

2 1

)

Y, with initial condition Y0 = (2, 1)

8. dYdt =
(

1 4

−3 2

)

Y, with initial condition Y0 = (1,−1)

In Exercises 9–14, the linear systems are the same as in Exercises 3–8. For each system,

(a) find the general solution;

(b) find the particular solution with the given initial value; and

(c) sketch the x(t)- and y(t)-graphs of the particular solution. (Compare these sketches

with the sketches you obtained in the corresponding problem from Exercises 3–8.)

9. dYdt =
(

0 2

−2 0

)

Y, with initial condition Y0 = (1, 0)

10. dYdt =
(

2 2

−4 6

)

Y, with initial condition Y0 = (1, 1).

11. dYdt =
(

−3 −5

3 1

)

Y, with initial condition Y0 = (4, 0)
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312 CHAPTER 3 Linear Systems

12. dYdt =
(

0 2

−2 −1

)

Y, with initial condition Y0 = (−1, 1)

13. dYdt =
(

2 −6

2 1

)

Y, with initial condition Y0 = (2, 1)

14. dYdt =
(

1 4

−3 2

)

Y, with initial condition Y0 = (1,−1)

15. The following six figures are graphs of functions x(t).
(a) Which of the graphs can be x(t)-graphs for a solution of a linear system with

complex eigenvalues?

(b) For each such graph, give the natural period of the system and classify the equi-

librium point at the origin as a spiral sink, a spiral source, or a center.

(c) For each graph that cannot be an x(t)-graph for a solution of a linear system

with complex eigenvalues, explain why not.
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3.4 Complex Eigenvalues 313

16. Show that a matrix of the form

A =
(

a b
−b a

)

with b 6= 0 has complex eigenvalues.

17. Suppose that a and b are real numbers and that the polynomial λ2 + aλ + b has

λ1 = α+ iβ as a root with β 6= 0. Show that λ2 = α− iβ, the complex conjugate of

λ1, must also be a root. [Hint: There are (at least) two ways to attack this problem.

Either look at the form of the quadratic formula for the roots, or notice that

(α + iβ)2 + a(α + iβ)+ b = 0

and take the complex conjugate of both sides of this equation.]

18. Suppose that the matrix A with real entries has complex eigenvalues λ = α+ iβ and

λ = α − iβ with β 6= 0. Show that the eigenvectors of A must be complex; that is,

show that, if Y0 = (x0, y0) is an eigenvector for A, then either x0 or y0 or both have

a nonzero imaginary part.

19. Suppose the matrix A with real entries has the complex eigenvalue λ = α+ iβ, β 6=
0. Let Y0 be an eigenvector for λ and write Y0 = Y1 + iY2, where Y1 = (x1, y1)

and Y2 = (x2, y2) have real entries. Show that Y1 and Y2 are linearly independent.

[Hint: Suppose they are not linearly independent. Then (x2, y2) = k(x1, y1) for

some constant k. Then Y0 = (1+ ik)Y1. Then use the fact that Y0 is an eigenvector

of A and that AY1 contains no imaginary part.]

20. Suppose the matrix A with real entries has complex eigenvalues λ = α + iβ and

λ = α − iβ. Suppose also that Y0 = (x1 + iy1, x2 + iy2) is an eigenvector for

the eigenvalue λ. Show that Y0 = (x1 − iy1, x2 − iy2) is an eigenvector for the

eigenvalue λ. In other words, the complex conjugate of an eigenvector for λ is an

eigenvector for λ.

21. Consider the function x(t) = e−αt sin βt , where α and β are positive.

(a) What is the distance between successive zeros of this function? More precisely,

if t1 < t2 are such that x(t1) = x(t2) = 0 and x(t) 6= 0 for t1 < t < t2, then

what is t2 − t1?

(b) What is the distance between the first local maximum and the first local mini-

mum of x(t) for t > 0?

(c) What is the distance between the first two local maxima of x(t) for t > 0?

(d) What is the distance between t = 0 and the first local maximum of x(t) for

t > 0?

22. Show that a function of the form

x(t) = k1 cos βt + k2 sin βt
can be written as

x(t) = K cos(βt − φ),
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where K =
√

k2
1 + k2

2 . (Sometimes a solution of a linear system with complex co-

efficients is expressed in this form in order to clarify its behavior. The magnitude

K gives the amplitude of the solution, and the angle φ is the phase of the solution.)

[Hint: Pick φ such that K cos φ = k1 and K sin φ = k2.]

23. For the second-order equation

d2y
dt2

+ p dydt + qy = 0 :

(a) Write this equation as a first-order linear system.

(b) What conditions on p and q guarantee that the eigenvalues of the correspond-

ing linear system are complex?

(c) What relationship between p and q guarantees that the origin is a spiral sink?

What relationship guarantees that the origin is a center? What relationship

guarantees that the origin is a spiral source?

(d) If the eigenvalues are complex, what conditions on p and q guarantee that so-

lutions spiral around the origin in a clockwise direction?

24. The slope field for the system

dx
dt = −0.9x − 2y
dy
dt = x + 1.1y

is given to the right. Plot the x(t)- and

y(t)-graphs for the initial conditions

A = (1, 1) and B = (−2, 1). What

do the graphs have in common?
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25. (Essay Question) We have seen that linear systems with real eigenvalues can be clas-

sified as sinks, sources, or saddles, depending on whether the eigenvalues are greater

or less than zero. Linear systems with complex eigenvalues can be classified as spi-

ral sources, spiral sinks, or centers, depending on the sign of the real part of the

eigenvalue. Why is there not a type of linear system called a “spiral saddle”?

26. Consider the linear system

dY
dt =

(

−3 10

−1 3

)

Y.

Show that all solution curves in the phase portrait for this system are elliptical.
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