Álgebra Lineal I

Grupo: 4122 Clave: 005

Prof.: **Ramón G. Plaza** Ayudante: **Julián Iglesias**

Horario

Lu, Mi, Vi 8:00 - 9:00 hrs. Salón 003 (Yelizcalli)

Ayudantía

Ma, Ju 8:00 - 9:00 hrs. Salón 003 (Yelizcalli)

Contacto

Ramón G. Plaza Oficina 225, IIMAS plaza@mym.iimas.unam.mx

Horas de oficina

Ju 17:00 - 18:00 hrs., ó mediante cita

Página del curso

http://www.fenomec.unam.mx/ramon/AlgebraLineal1-2019-1.html

Calendario

- Periodo de clases: 6 de agosto al 23 de noviembre, 2018.
- Dias inhábiles: 1, 2 y 19 de noviembre, 2018.
- Periodo de exámenes: 26 de noviembre al 7 de diciembre, 2018.

Objetivo del curso y pre-requisitos

El objetivo del curso es introducir al alumno a las herramientas básicas de Álgebra Lineal: solución de ecuaciones lineales, cálculo de valores propios y espacios invariantes, así como sus principales aplicaciones. Los pre-requisitos son Álgebra Superior I y II, Geometría Analítica I y II.

Evaluación

Se evaluará al estudiante con tres exámenes parciales (dos durante el semestre y otro durante la semana de exámenes ordinarios) y con 10 ó 12 tareas. Las fechas de los exámenes parciales se decidirán durante el semestre y tendrán una duración de una hora. Las tareas se entregarán los viernes en fechas determinadas. No hay prórrogas. La calificación final consistirá de: 70% exámenes, 30% tareas. No se evaluará con asistencia a la clase ni con asistencia a las ayudantías. El reglamento general del curso puede encontrarse en: http://www.fenomec.unam.mx/ramon/reglamento.pdf

Temario

- 1. Operaciones con matrices
 - 1.1. Introducción
 - 1.2. Álgebra de matrices
 - 1.3. Sistemas de ecuaciones lineales (i): eliminación gaussiana
 - 1.4. Descomposición LU
 - 1.5. Aplicaciones
- 2. Espacios vectoriales de dimensión finita con producto interno
 - 2.1. Espacios y subespacios vectoriales
 - 2.2. Dependencia lineal, bases y dimensión
 - 2.3. Ortogonalidad: conjuntos ortonormales y proyecciones
 - 2.4. Proceso de ortonormalización de Gram-Schmidt
 - 2.5. Factorización QR y transformación de Householder
- 3. Determinantes
 - 3.1. Definición
 - 3.2. Propiedades del determinante
 - 3.3. Sistemas de ecuaciones lineales (ii): regla de Cramer
- 4. Transformaciones lineales
 - 4.1. Núcleo, rango, isomorfismos
 - 4.2. Representación por matrices, composición y cambio de base
 - 4.3. Similaridad
 - 4.4. Espacio dual
 - 4.5. Complemento ortogonal
 - 4.6. Sistemas de ecuaciones lineales (iii): la alternativa de Fredholm
- 5. Teoría espectral
 - 5.1. Valores propios y vectores propios
 - 5.2. Espacios invariantes y diagonalización
 - 5.3. Lema de Schur
 - 5.4. Descomposición en valores singulares (SVD)
 - 5.5. Teorema espectral para matrices Hermiteanas
 - 5.6. Teorema espectral para matrices unitarias
 - 5.7. Forma canónica de Jordan
- 6. Cálculos con matrices
 - 6.1. Norma y número de condición
 - 6.2. Estabilidad
 - 6.3. Ejemplos: transformación de Householder, mínimos cuadrados

- 6.4. Sistemas de ecuaciones lineales (iv): algoritmo LU, factorización de Cholesky
- 6.5. Cálculo de valores propios: cociente de Rayleigh, forma de Hessenberg, algoritmos QR y SVD.
- 6.6. Aplicaciones

Texto

El texto que se usará durante el curso es el clásico libro de Gilbert Strang, cuarta edición:

• G. Strang, *Linear Algebra and its Applications*, fourth ed. Thompson Brooks/Cole, Belmont, CA, 2006.

Es un texto clásico y ampliamente utilizado en universidades norteamericanas (por ejemplo, en el M.I.T.). Cabe señalar que no se cubrirá todo el material del libro y, a su vez, que no todo lo que se verá durante el curso está en el mismo. Sin embargo, es el texto cuya intersección con el material del curso es máxima.

Bibliografía básica

Se utilizarán con regularidad también los siguientes libros cuyo enfoque para ciertos temas será adoptado preferentemente durante el curso:

- 1. S. Axler, *Linear Algebra Done Right*, second ed. Springer-Verlag, New York, NY, 1997.
- 2. S. H. Friedberg, A. J. Insel, L. E. Spence, *Linear Algebra*, second ed. Prentice Hall Inc., Englewood Cliffs, NJ, 1989.
- 3. J. Humpherys, T. J. Jarvis, E. J. Evans, *Foundations of Applied Mathematics, Vol. I: Mathematical Analysis*. Society of Industrial and Applied Mathematics, Philadelphia, PA, 2017.
- 4. C. Meyer, *Matrix Analysis and Applied Linear Algebra*. Society of Industrial and Applied Mathematics, Philadelphia, PA, 2000.
- 5. B. Noble, J. W. Daniel, *Applied Linear Algebra*, second ed. Prentice Hall Inc., Englewood Cliffs, NJ, 1977.
- 6. L. Trefethen, D. Bau III, *Numerical Linear Algebra*. Society of Industrial and Applied Mathematics, Philadelphia, PA, 1997.

Bibliografía complementaria

Asimismo, recomiendo al estudiante profundizar algunos temas específicos consultando la siguiente bibliografía:

Álgebra lineal numérica:

- 7. A. K. Björck, *Numerical Methods in Matrix Computations*, vol. 59 in texts in Applied Mathematics, Springer-Verlag, New York, NY, 2015.
- 8. J. W. Demmel, *Applied Numerical Linear Algebra*. Society of Industrial and Applied Mathematics, Philadelphia, PA, 1997.

9. G. H. Golub, C. F. Van Loan, *Matrix computations*, fourth ed. The Johns Hopkins University Press, Baltimore, MA, 2013.

Teoría espectral y aplicaciones:

- 10. R. A. Horn, C. R. Johnson, *Matrix Analysis*, second ed. Cambridge University Press, new York, NY, 2013.
- 11. T. Kato, A Short Introduction to Perturbation Theory for Linear Operators. Springer-Verlag, New York, NY, 1982.

Teoría general y temas selectos:

- 12. S. Lang, *Linear Algebra*, third ed. Undergraduate Texts in Mathematics, Springer-Verlag, New York, NY, 1987.
- 13. P. D. Lax, *Linear Algebra and its Applications*, second ed. Wiley-Interscience, John Wiley & Sons, Hoboken, NJ, 2007.
- 14. D. Serre, *Matrices, Theory and Applications*, second ed. Vol. 216 of Graduate Texts in Mathematics, Springer-Verlag, New York, NY, 2010.