Álgebra Lineal I Tarea 5

1. $(V, \langle \cdot, \cdot \rangle)$ es un espacio vectorial con producto interno definido sobre un campo $\mathbb{F} = \mathbb{R}$ ó \mathbb{C} y $\| \cdot \|$ es la norma inducida por dicho producto interno, $\|u\| = \sqrt{\langle u, u \rangle}$. Demuestra, para cualesquiera $u, v \in V$:

(a) la desigualdad del triángulo:

$$||u+v|| \le ||u|| + ||v||;$$

(b) la identidad del paralelogramo:

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2);$$

(c) la desigualdad de polarización en el caso $\mathbb{F} = \mathbb{R}$:

$$\langle u, v \rangle = \frac{1}{4} (\|u + v\|^2 - \|u - v\|^2);$$

(d) la desigualdad de polarización en el caso $\mathbb{F} = \mathbb{C}$:

$$\langle u, v \rangle = \frac{1}{4} (\|u + v\|^2 - \|u - v\|^2 + i\|u - iv\|^2 - i\|u + iv\|^2).$$

2. Sean W_1, W_2 subespacios vectoriales de V, espacio vectorial de dimensión finita con producto interno. Demuestra que:

(a) Si $W_1 \subset W_2$ entonces $W_2^{\perp} \subset W_1^{\perp}$.

(b)
$$(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$$
.

(c)
$$(W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$$
.

3. Encuentra una base ortonormal de $W^{\perp} \subset \mathbb{R}^4$ donde

$$W = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix} \right\}$$

4. Sean $u, v \in \mathbb{R}^4$, dados por:

$$u = \begin{bmatrix} -1\\4\\3\\0 \end{bmatrix}, \qquad v = \begin{bmatrix} 0\\1\\-2\\3 \end{bmatrix}.$$

1

(a) Determina la proyección ortogonal de u sobre span $\{v\}$.

(b) Determina la proyección ortogonal de v sobre span $\{u\}$.

- (c) Determina la proyección ortogonal de u sobre span $\{v\}^{\perp}$.
- (d) Determina la proyección ortogonal de v sobre span $\{u\}^{\perp}$.
- 5. Sea V el espacio vectorial $C([-\pi,\pi];\mathbb{R})$ con producto interno

$$\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x) dx.$$

Sea $W = \operatorname{span}(S) \subset V$ donde $S = {\cos x, \sin x, \cos(2x), \sin(2x)}.$

- (a) Demuestra que S es un conjunto ortonormal.
- (b) Calcula ||x||.
- (c) Calcula $\operatorname{proj}_W(\cos(3x))$.
- (d) Calcula $\operatorname{proj}_W(x)$.
- **6.** (a) Sea $W \subset \mathbb{R}^4$ el subespacio

$$W = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\2 \end{bmatrix} \right\}$$

Encuentra $w \in W$ tal que minimice ||w - v|| con $v = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$.

(b) Encuentra el polinomio $u(x) \in \mathbb{R}[x;3]$ tal que $u(0)=0, \, (du/dx)(0)=0$ y que minimice

$$\int_0^1 (2+3x - u(x))^2 dx.$$

- 7. Sean $u \in \mathbb{C}^n$ con ||u|| = 1 y $Q = I_n uu^* \in \mathbb{M}_{n \times n}(\mathbb{C})$. Demuestra que:
 - (a) Q no es invertible.
 - (b) $\dim \mathcal{R}(Q) = n 1$.
- 8. Sean

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 2 \\ 1 & 1 & -3 \\ 0 & 1 & 1 \end{bmatrix}, \qquad b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

- (a) Determina la factorización QR de A.
- (b) Usando (a) encuentra la solución de mínimos cuadrados de Ax = b.

9. (a) Aplicando la reducción de Householder encuentra una base ortonormal de $\mathcal{R}(A) \subset \mathbb{R}^4$, donde

$$A = \begin{bmatrix} 4 & -3 & 4 \\ 2 & -14 & -3 \\ -2 & 14 & 0 \\ 1 & -7 & 15 \end{bmatrix}$$

(b) Calcula la solución de mínimos cuadrados del problema Ax=b, donde

$$b = \begin{bmatrix} 5 \\ -15 \\ 0 \\ 30 \end{bmatrix}$$

10. Calcula las matrices de Householder $H_{u_1},\,H_{u_2}$ que transforman la matriz

$$A = \begin{bmatrix} 1 & 3 & 1 \\ 1 & 3 & 7 \\ 1 & -1 & -4 \end{bmatrix},$$

en una triangular superior (es decir, $H_{u_1}H_{u_2}A=R$ donde R es triangular superior).

Total: 10 pts.